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Functional connectomics spanning multiple 
areas of mouse visual cortex

The MICrONS Consortium*

Understanding the brain requires understanding neurons’ functional responses to 
the circuit architecture shaping them. Here we introduce the MICrONS functional 
connectomics dataset with dense calcium imaging of around 75,000 neurons in 
primary visual cortex (VISp) and higher visual areas (VISrl, VISal and VISlm) in an 
awake mouse that is viewing natural and synthetic stimuli. These data are co-registered 
with an electron microscopy reconstruction containing more than 200,000 cells and 
0.5 billion synapses. Proofreading of a subset of neurons yielded reconstructions that 
include complete dendritic trees as well the local and inter-areal axonal projections 
that map up to thousands of cell-to-cell connections per neuron. Released as an 
open-access resource, this dataset includes the tools for data retrieval and analysis1,2. 
Accompanying studies describe its use for comprehensive characterization of cell 
types3–6, a synaptic level connectivity diagram of a cortical column4, and uncovering 
cell-type-speci!c inhibitory connectivity that can be linked to gene expression data4,7. 
Functionally, we identify new computational principles of how information is 
integrated across visual space8, characterize novel types of neuronal invariances9 and 
bring structure and function together to uncover a general principle for connectivity 
between excitatory neurons within and across areas10,11.

Francis Crick wrote in 197912 that “It is no use asking for the impos-
sible, such as, say, the exact wiring diagram for a cubic millimetre of 
brain tissue and the way all its neurons are firing”. Crick’s request was 
presumably motivated by the idea that the function of every neuron 
depends on its synaptic connections13, and such dataset would allow the 
rigorous test and refinement of hypotheses about network anatomy. 
For decades, these relationships were studied through challenging 
single-cell experiments14–17 or electrophysiology recordings18,19. Later, 
by combining calcium imaging with in vitro electrophysiological20 and 
viral tracing methods21 it was possible to link the functional recordings 
to the underlying connectivity. Much has been learned from these 
experiments, but they provide fragmentary information.

To realize Crick’s vision, volumetric electron microscopy (EM) can 
be combined with calcium imaging22,23, as demonstrated at smaller 
scales in the visual cortex24–26, retina27–29 and other systems30,31. Here 
we present a dataset (Fig. 1) that bridges neuronal function and con-
nectivity at the cubic millimetre scale in mouse visual cortex (in vivo 
dimensions 1.3#×#0.87#×#0.82#mm3). To measure visual responses, we 
performed calcium imaging of excitatory neurons across cortical lay-
ers in response to visual stimuli. To map connectivity, we imaged the 

same cubic millimetre with serial section transmission EM (TEM). Using 
scalable convolutional networks and custom computational systems, 
we reconstructed neurons and their synaptic connections in 3D, with 
extensive proofreading to ensure accuracy. Finally, we co-registered 
the calcium-imaging and TEM data to match neuronal responses to 
neurons and their connectivity.

As proofreading of the automated reconstruction continues, the 
dataset is becoming increasingly accurate. It includes pyramidal neu-
rons from all layers (the following examples link to public data in Neuro-
glancer, our data visualization tool (https://www.microns-explorer.org/
ngl-instructions), such as cortical layer 5 thick tufted (https://go.nature.
com/L5tt), layer 5 near-projecting (https://go.nature.com/l5np), layer 
4 (https://go.nature.com/l4) and layer 2/3 (https://go.nature.com/l2-3) 
neurons. It includes inhibitory neurons from many classes, such as bipo-
lar cells (https://go.nature.com/bip), basket cells (https://go.nature.
com/bkt) a chandelier cell (https://go.nature.com/cdl) and Martinotti 
cells (https://go.nature.com/mar). It also includes non-neuronal cells, 
such as astrocytes (https://go.nature.com/asc) and microglia (https://
go.nature.com/mg) and the network of blood vessels (https://go.nature.
com/bv). Using the interactive tools, one can visualize the input and 
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output synapses of a single cell (https://go.nature.com/io). The data-
base of functional recordings (https://www.microns-explorer.org/
cortical-mm3#f-data) is also available for download to explore how 
cells responded to visual stimuli.

The first set of scientific findings emerging from the data are 
described in the accompanying studies. Detailed morphological and 
synaptic data enabled novel approaches to characterize cell types3–7 
and show that connectivity can be used to identify cell types that are 
difficult to identify by morphology alone4, a recurring theme in con-
nectomic cell typing. We also began to establish correspondences 
between connectivity and transcriptomics-defined cell types7. The 
combination of structural connectivity and functional similarity across 
thousands of pairs of individual neurons enabled a new examination of 
‘like-to-like’ connectivity25,32 and shows that this principle generalizes 
across cortical layers and visual areas10. This work relied on a novel 
approach using an artificial neural network that was trained to predict 
neural activities from visual stimuli10,11. Further linked Articles utilize 
this model to point the way to experimental studies of the mechanisms 
supporting contextual interactions8–10 and invariances9 in visual corti-
cal computations.

The potential of the dataset extends far beyond these initial findings. 
To maximize its impact, we have made the data publicly available as a 
resource (https://www.microns-explorer.org/) with tools for interac-
tive exploration and programmatic analysis. Finally, the accompanying 
studies highlight the tools that we developed to scale up connectomics 
to a cubic millimetre1,2,11,33. These technologies are enabling broader 
applications, such as reconstruction of the entire wiring diagram of a 

whole fly brain34–36, the first adult connectome to be completed since 
that of Caenorhabditis elegans.

Overview
The data were collected from a single mouse and involved a pipeline 
spanning three primary sites. First, two-photon (2P) in vivo calcium 
imaging under various visual stimulation conditions was performed at 
Baylor College of Medicine. Then the mouse was shipped to the Allen 
Institute, where the imaged tissue volume was extracted, prepared 
for EM imaging, sectioned and imaged over a period of six months 
of continuous imaging. The EM data were then montaged, roughly 
aligned and delivered to Princeton University, where fine alignment was 
performed and the volume was densely segmented. Finally, extensive 
proofreading was performed on a subset of neurons to correct errors of 
automated segmentation, and cell types and various other structural 
features were annotated (Fig. 2).

2P calcium imaging
The calcium-imaging data include the responses to visual stimuli of 
an estimated 75,909 excitatory neurons spanning cortical layers 2 to 
5 across 4 visual areas in a transgenic mouse that expressed GCaMP6s 
in excitatory neurons via Slc17a7-Cre and Ai162. The dataset contains 
14 individual scans, collected between postnatal day 75 (P75) and P81, 
spanning a volume of approximately 1,200#×#1,100#×#500#µm3 (anter-
oposterior#×#mediolateral#×#radial depth; Fig. 3a). The centre of the 
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Fig. 1 | Resource data type and data products. a, The nine data resources that 
are publicly available at https://www.microns-explorer.org/. b, Relationship 
between different data types. The primary in vivo data resource consists of  
2P calcium images, 2P structural images, natural and parametric video stimuli 
used as visual input, and behavioural measurements. The secondary (derived) 
in vivo data resource includes the responses of approximately 75,909 pyramidal 
cells from cortical layer 2 to 5 segmented from the calcium videos, along with 
the pupil position and diameter extracted from the video of eye movements 
and locomotion measured on a single-axis treadmill. The primary anatomical 
data are composed of ex vivo serial section transmission EM images registered 
with the in vivo 2P structural stack. The volume includes a portion of VISp and 
three higher visual areas—VISlm, VISrl and VISal—for all cortical layers except 
extremes of layer 1. The secondary anatomical data is derived from the serial 

section EM image stack, and consists of semi-automated segmentation of cells, 
automated segmentation of nuclei, and automatically detected synapses. The 
tertiary anatomical data consists of assignments of the synapses to presynaptic 
and postsynaptic cells, triangle meshes for these segments, classification of 
nuclei as neuronal versus non-neuronal, and classification of neurons into 
excitatory and inhibitory cell classes. Secondary data for co-registration of 
in vivo and ex vivo images consists of manually chosen correspondence points 
between 2P structural images and EM images. Tertiary co-registration data are a 
transformation derived from these correspondence points. The transformation 
is then used to facilitate the matching of cell indices between the 2P calcium 
cell segmentation masks and the EM segmentation cells. MicroCT, micro- 
computed tomography.
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volume was placed at the junction of primary visual cortex (VISp) and 
three higher visual areas—lateromedial area (VISlm), rostrolateral area 
(VISrl) and anterolateral area (VISal)—in order to image retinotopically 
matched neurons that were potentially connected via inter-areal feed-
forward and feedback connections.

Each scan consisted of two adjacent overlapping 620-µm-wide fields 
at multiple imaging planes, imaged with the wide field of view (FOV) 
of the 2P random access mesoscope (2P-RAM). The scans ranged up to 
approximately 500#µm in depth, with a target spacing of 10–15#µm to 
maximize the coverage of imaged cells in the volume (Fig. 3b,c). For 
11 of the 14 scans, 4 imaging planes were distributed widely in depth 
using the mesoscope remote focus, spanning roughly 300–400#µm 
with an average spacing of approximately 125#µm between planes for 
near-simultaneous recording across multiple cortical layers. In the 
remaining 3 scans, fewer planes were imaged at 10–20#µm spacing to 
achieve a higher effective pixel density (Extended Data Table 1). These 
higher-resolution scans were designed to be amenable to future efforts 
to extract signals from large apical dendrites from deeper layer 5 and 
layer 6 neurons. However, for this release, imaging data were automati-
cally segmented only from somas using a constrained non-negative 
matrix factorization approach and fluorescence traces were extracted 
and deconvolved to yield activity traces. In total, 125,413 masks were 
generated across 14 scans, of which 115,372 were automatically classi-
fied as somatic masks by a trained classifier (Fig. 3d).

The functional data collection relied on newly established technolo-
gies, especially the 2P-RAM mesoscope. In addition, we developed 
an imaging workflow with the goal of full coverage within the target 
volume. This required several optimizations—for example, to densely 
target scan planes across multiple days, we needed a common reference 
frame to assess the coverage of scans within the volume. Therefore, 
in addition to the functional scans, high-resolution (0.5–1.0#pixels 
per µm) structural volumes were acquired for registration with the 
subsequent EM data. At the end of each imaging day, individual imag-
ing fields of the functional scans were independently registered into 
a structural stack (Fig. 3b,c). This enabled us to target scans in subse-
quent sessions to optimize coverage across depth. On the last day of 
imaging, a 2-channel (green, red) 1,412#×#1,322#×#670#µm3 (anteropos-
terior#×#mediolateral#×#radial depth) structural stack was collected at 

0.5#pixels per µm after injection of fluorescent dye (Texas Red) to label 
vasculature, enhancing fiducial labelling for co-registration with the 
EM volume (Fig. 3a).

After registration of the functional imaging field with the structural 
stack, 2D centroids from the segmentation were assigned 3D centroids 
in the shared structural stack coordinate space, on the basis of a greedy 
assignment of 3D proximity. Based on this analysis, we estimate the 
functional imaging volume contains 75,909 unique functionally imaged 
neurons consolidated from 115,372 segmented somatic masks, with 
many neurons imaged in 2 or more scans.

Behavioural tracking and visual stimulation
During imaging, the mouse was head-restrained, and the stimulus 
was presented to the left visual field. Treadmill rotation (single axis) 
and video of the left eye were captured throughout the scan, yielding 
locomotion velocity, eye movements and pupil diameter data.

The stimulus for each scan lasted approximately 84#min, and con-
sisted of naturalistic (complex scenes with real-world statistics) and 
parametric (simpler, artificially generated) video stimuli. The majority 
of the stimulus (64#min) was made up of 10#s clips drawn from films, 
the Sports-1M dataset37 or rendered first-person point of view (POV) 
movement through a virtual environment (Fig. 3e). Our goal was to 
approximate natural statistical complexity to cover a sufficiently large 
feature space. These data can support multiple lines of investigation, 
including applying deep learning-based systems identification meth-
ods to build highly accurate models that predict neural responses to 
arbitrary visual stimuli11,38. These models enable a systematic charac-
terization of tuning functions with minimal assumptions relative to 
classical methods using parametric stimuli38.

The stimulus composition included a mixture of unique stimuli for 
each scan, some that were repeated across every scan, and some that 
were repeated within each scan. In particular, 6 natural film stimuli 
clips totalling 1#min (oracle natural videos) were repeated in the same 
order 10 times per scan, and were used to evaluate the reliability of 
the neural responses to repeated visual stimuli (Fig. 3f). Variations 
in this ‘oracle score’ from scan to scan serve as an important indica-
tor of scan quality, since reliable responses are not observed when 
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Fig. 2 | Major experimental steps in the data acquisition workflow. Outline 
of the major sequential steps used to generate the MICrONS dataset. First, 
in vivo measurements of neuronal functional properties are acquired from  
a region of interest (ROI) in the mouse visual cortex. In addition, a spatial 
overlapping in vivo structural image stack is collected to facilitate later 
registration with postmortem data. Following fixation of the brain, the tissue 
encompassing the functional ROI is processed for histology and sectioned. 

These sections are then imaged by TEM, and the resulting images are 
assembled into a 3D volume. Automated methods subsequently reconstruct 
the cellular processes and synapses within this volume, and the automated 
reconstructions are proofread as needed to ensure accuracy for further 
analysis. Image panels are adapted from Yin et al.63, Springer Nature Limited, 
and mouse and autoTEM drawings are adapted from Mahalingam et al.64,  
CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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imaging conditions are poor or the mouse is not engaged with the  
stimulus.

To relate our findings to previous work, we also included a battery of 
parametric stimuli (Monet2 and Trippy, 10#min each; Methods, ‘Stimu-
lus composition’) that were generated to produce spatially decorrelated 
stimuli that were suitable for characterizing receptive fields while also 
containing local or global directional and orientation components 
for extracting basic tuning properties such as orientation selectivity 
(Fig. 3e,g).

The EM volume
After the in vivo neurophysiology data collection, we imaged the same 
volume of cortex ex vivo using TEM, which enabled us to map the con-
nectivity of neurons for which we measured functional properties. These 
required considerable scaling from previous state-of-the-art datasets, 
with particular emphasis on automation and on reducing rare but poten-
tially catastrophic events that could incur loss of multiple serial sections.

The tissue sample was trimmed and sectioned into 27,972 serial sec-
tions (nominal thickness 40#nm) onto grid tape to facilitate automated 

imaging. Although the cutting was automated, it was supervised by 
humans who worked in shifts around the clock for 12 days. They were 
ready to stop and restart the ultramicrotome immediately if there 
was a risk of multiple section loss. As will be described later, the EM 
dataset is subdivided into two subvolumes owing to sectioning and 
imaging events (details of sectioning timeline and artefacts are pre-
sented in Methods).

A total of 26,652 sections were imaged by 5 customized automated 
TEMs (autoTEMs), which took approximately 6 months to complete 
and produced a dataset composed of 2#Pb of raw data at a resolution 
of approximately 4#nm (Fig. 4d–h).

An 800-µm region (sections 7,931–27,904) (Fig. 4a) was selected for 
further processing, as it had no consecutive section loss and an overall 
section loss of around 0.1%. This region contains approximately 95 
million individual tiles that were stitched into 2D montages per section 
and then aligned in 3D. Owing to the re-trimming of the block and the 
requirement for a knife change (Methods), the EM data are divided 
into two subvolumes (Fig. 4a). One subvolume contains approximately 
35% of the sections (sections 7,931–14,815) and the other contains 65% 
of the sections (sections 14,816–27,904). The two subvolumes were 
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f, Raster of deconvolved calcium activity for three neurons to repeated 
stimulus trials (oracle trials; ten repeats of six sequential clips, with each repeat 
normalized independently). Rasters for high (top), medium (middle) and low 
(bottom) oracle scores with the percentile shown on the right. g, Trial-averaged 
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processed individually and later aligned to each other in the same global 
coordinate frame, enabling the tracing of axons and dendrites across 
their border (Fig. 5). To facilitate the reconstruction process across the 
division between the two subvolumes, a composite image of the partial 
sections was created at the interface. However, the two subvolumes 
were reconstructed separately and each has a distinct representation 
in the analysis infrastructure and database.

Accurate reconstruction requires extremely accurate stitching and 
alignment of images with hundreds of thousands of pixels on a side. 
To achieve this at petabyte scale, we split the process into distinct 
coarse and fine pipelines. For the coarse pipeline, sections were ini-
tially stitched using a per image affine transformation, and a polyno-
mial transformation model was applied to a subset of sections whose 
stitching quality had a local misalignment error of more than five pixels. 
Down-sampled 2D stitched sections were then roughly aligned in 3D. 
The rough alignment process ensured global consistency within the 
dataset and accounted for images from multiple autoTEMs with var-
ied image sizes and resolutions. It is also corrected for locally varying 

misalignments such as scale differences and deformations between 
sections and aids the fine alignment process.

To further refine image alignment, we developed a set of convolu-
tional networks to estimate pixel-wise displacement fields between 
pairs of neighbouring sections33. This process was able to correct non-
linear misalignments around cracks and folds that occurred during 
sectioning. Although this fine alignment does not restore the missing 
data inside a fold, it was still effective in correcting the distortions 
caused by large folds (Fig. 4b,c), which caused large displacements 
between sections and were the main cause of reconstruction errors. 
Although imaging was performed with 4#nm resolution, the aligned 
imagery volume was generated at 8#nm resolution to decrease data 
size for subsequent processing.

Automated reconstruction
We densely segmented cellular processes across the volume using 
affinity-predicting convolutional neural networks and mean affinity 
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agglomeration (Fig. 5a) Segmentation was not attempted where the 
alignment accuracy was deemed insufficient or tissue was missing or 
occluded over multiple sections.

The automatic segmentation produced highly accurate dendritic 
arbors before proofreading, enabling morphological identification 
of broad cell types. Most dendritic spines are properly associated with 
their dendritic trunk. Recovery of larger-caliber axons, those of inhibi-
tory neurons, and the initial portions of excitatory neurons was also 
typically successful. Owing to the high frequency of imaging defects 
in the shallower and deeper portions of the dataset, processes near the 
pia and white matter often contain errors. Many non-neuronal objects 
are also well-segmented, including astrocytes, microglia and blood 
vessels. The two subvolumes of the dataset were segmented separately, 
but the alignment between the two is sufficient for manually tracing 
between them (Fig. 5b).

Nuclei were also automatically segmented (n#=#144,120) within sub-
volume 65 using a distinct convolutional network33. To use nucleus 
shape to map cell classes across the dataset, we manually labelled 
a subset of the 2,751 nuclei in a 100-µm-square column of the data-
set as non-neuronal, excitatory or inhibitory. We then developed 
machine learning models to automate distinguishing neurons from 
non-neuronal cells such as glia, as well as to classify cells at different lev-
els of resolution2,6 within the subvolume with high accuracy (Methods). 
The results of this nucleus segmentation, manual cell classification and 
model building are provided as part of this data resource.

Synaptic contacts were automatically segmented in the aligned 
EM image, and the presynaptic and postsynaptic partners from the 
cell segmentation were automatically assigned to identify each 
synapse (Fig. 5d). We automatically detected and associated a total 
of 524 million synaptic clefts across both subvolumes (subvolume 
35: 186 million, subvolume 65: 337 million). We manually identified 
synapses in 70 small subvolumes (n#=#8,611 synapses) distributed 
across the dataset, giving the automated detection an estimated 
precision of 96% and recall of 89% (Extended Data Fig. 1). We esti-
mated partner assignment accuracy at 98% from a separate dataset 

of manually annotated synapses (n#=#191) that were held-out from  
training.

Proofreading
Although the automated segmentation creates impressive reconstruc-
tions, proofreading is required to make those reconstructions more 
complete and accurate. The proofreading process involves merging 
additional segments of the neurons that were missing in the recon-
struction, and splitting segments that were incorrectly associated 
with a neuron. To perform real-time collaborative proofreading in a 
petascale dataset, we developed the ChunkedGraph proofreading 
system1 that can be used with Neuroglancer as a user interface or a 
REST (representational state transfer) application programming inter-
face (API) for computationally driven edits. This flexibility enabled 
the proofreading methods to be tailored to different scientific needs, 
including manual, semi-automated and automated proofreading. Note 
that all proofreading was performed in subvolume 65.

The released segmentation now contains all 1,046,656 edits of the 
proofreading that had occurred as of 16 September 2024 and is being 
updated quarterly. Proofreading was performed by individual scientists 
and focused teams of proofreaders to both support targeted scien-
tific discovery for companion studies3–7,10 and correct errors that most 
affected general connectivity. Because of this, the level of completeness 
differs across these cells (Fig. 5), as neurons have been proofread as part 
of multiple Machine Intelligence from Cortical Networks (MICrONS) 
data analysis projects. For example, in the functional connectomics 
study, we proofread the full extent of axonal and dendritic arbors of 85 
excitatory neurons within subvolume 65 (Fig. 5c), whereas for a broad 
columnar sample only the dendrites of 1,188 excitatory neurons were 
proofread. The result is a wide variation in edits per neuron with more 
edits generally corresponding to more extensive axons (100–1,000 
edits per axon) (Extended Data Fig. 2). The most time-consuming task is 
extending axons, and thus this is where the data varies most across cells 
and studies. In total, the released dataset includes 1,433 neurons that 
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Fig. 5 | Reconstruction. a, A pyramidal cell reconstructed from the EM images (inset). b, Pyramidal cells from both subvolumes as they cross the subvolume 
boundary. c, A selection of 78 proofread pyramidal cells from subvolume 65. d, A distant pair of pyramidal cells connected by a synapse within subvolume 65.
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have proofread axons with varying levels of extension, where all incor-
rect mergers have been removed and many false splits corrected. From 
the proofread dendrites, we determined that 99% of inputs were correct 
when assigned to a postsynaptic soma in the automated segmentation. 
As a result, for the neurons with proofread axons all synapses—both 
input and output—are now correctly associated. A full-time proofreader 
can generate between 400–600 axon extension edits in a work week. 
The proofread excitatory neurons contain some of the most extensive 
axonal arbors reconstructed in the neocortex at EM resolution, with the 
longest excitatory axon measuring 18.9#mm with 2,483 synaptic outputs 
and inhibitory axons ranging from in length from 1.1 to 32.3#mm with a 
mean of 2,754 synaptic outputs (range 99–14,019) (Fig. 5f). In general, 
inhibitory axons were more complete in the automated reconstruction, 
probably because their axons are slightly thicker than those of most 
excitatory axons.

In addition to proofreading axons and dendrites, we made wide-
spread edits to enhance the general dataset quality. Following the 
automated segmentation, there were 7,050 segmented objects con-
sisting of a total of 17,753 neurons that were merged together (based 
on nucleus segmentation), preventing analysis of these cells. Using a 
combination of manual and automated error-detection workflows, we 
have split almost all neurons into single-soma objects, bringing the 
total number of individually segmented neurons to 84,035 (Extended 
Data Fig. 3). To work through such dataset-wide tasks more quickly, 
we developed and validated an automated error-detection and cor-
rection workflow using graph and morphological analysis to identify 
merge error locations and generate edits that could be executed using 
PyChunkedGraph (PCG)1. This automated approach (NEURD) was also 
used to remove false axon merges onto dendritic segments and split 
axon branches with abnormally high degree across the dataset2, total-
ling more than 164,000 edits.

Proofreading is ongoing in the dataset with regular public updates, 
and there is now a project called the Virtual Observatory of the Cortex 
(https://www.microns-explorer.org/vortex) funded by the National 
Insitutes of Health (NIH), to which individual researchers can submit 
scientific requests to steer proofreading and annotation of the dataset 
in directions that will move their research questions forward.

Functional–structural co-registration
Functional connectomics requires that cells are matched between the 
2P calcium-imaging and EM coordinate frames. We achieved this using 
a three-phase approach combining expert annotations and automatic 
methods. In the first step, we generated a co-registration transform 
using a set of 2,934 expert-matched fiducials between the EM volume 
and the 2P structural dataset (1,994 somata and 942 blood vessels, 
mostly branch points, which are available as part of the resource; Meth-
ods). To evaluate the error of the transform we evaluated the distance 
in micrometres between the location of a fiducial after co-registration 
and its original location; a perfect co-registration would have residuals 
of 0#µm. The average residual was 3.8#µm.

For the second step we used the results of the transform to guide a 
group of experts to manually match 19,181 functional ROIs from 14 scans 
to 15,439 individual EM neurons (multiple functional ROIs can match 
to a single EM neuron if it was present in multiple scans). The results of 
manual matching provide both high-confidence matches for analysis 
and ‘ground truth’ for fully automated approaches. These results help 
to validate the first phase, as most matched ROIs have low residuals 
and high separation scores (Extended Data Fig. 4). Furthermore, as 
expected for successful matches, ROIs with at least moderate visual 
responses that are independently matched to the same neuron across 
multiple scans have higher signal correlations than adjacent neurons 
(Extended Data Fig. 4).

In the third and final step, we used two automated approaches to 
match the entire set of functional ROIs. The first approach used the 

EM-to-2P co-registration transform to move the centroids of all EM 
neurons (predicted from nucleus detections) to the 2P coordinate 
space, and then used minimum weight matching for bipartite graphs 
to assign functional ROIs to EM neurons. This method (referred to 
as the fiducial-based automatch table) resulted in 84,198 functional 
ROIs matched to 37,364 EM neurons. Considering all matches, this 
method achieved 83% precision relative to manual matchers, but fil-
tering out matches in the bottom 30% of separation scores yields 90% 
precision, while still including 59,934 functional ROIs and 31,042 EM 
neurons. (Extended Data Fig. 5). The second automated approach used 
only the EM and 2P blood vessel segmentations to generate a novel 
co-registration between the two volumes, using a fine-scale deform-
able B-spline-based registration. Then, minimum weight matching for 
bipartite graphs was used to assign functional ROIs to EM neurons. 
This table (referred to as the vessel-based automatch table) contains 
75,856 functional ROIs matched to 34,712 EM neurons. Remarkably, this 
fiducial-free method performed as well as the fiducial-based method, 
achieving 84% precision with manual matches. Filtering out matches 
in the bottom 30% of separation scores yielded 90% precision, while 
including 53,248 functional ROIs and 28,233 EM neurons (Extended 
Data Fig. 5). Finally, we tested whether taking only the matches for which 
both automated methods agree would increase the performance rela-
tive to manual matches. Indeed, this hybrid automated table achieves 
89% agreement with no additional filtering, yielding 60,091 functional 
ROIs and 29,620 EM neurons (Extended Data Fig. 5).

Integrated analysis
To create a resource for the neuroscience community, we have made 
the data from each of the steps described above—functional imag-
ing, the EM subvolumes, segmentation and a variety of annotations—
publicly available on the MICrONS Explorer website (https://www.
microns-explorer.org/). From the site, users can browse through the 
large-scale EM imagery and segmentation results using Neuroglancer 
(https://github.com/google/neuroglancer); several example visuali-
zations are provided to get started. All data are served from publicly 
readable cloud buckets hosted through Amazon Web Services (AWS) 
and Google Cloud Storage.

To enable systematic analysis without downloading hundreds of  
gigabytes of data, users can selectively access cloud-based data pro-
grammatically through a collection of open source Python clients 
(Extended Data Table 2). The functional data, including calcium traces, 
stimuli, behavioural measures and more, are available in a DataJoint 
database that can be accessed using DataJoint’s Python API (https://
datajoint.com/docs/), or is available as neurodata without borders 
(NWB) files on the Distributed Archives for Neurophysiology Data Inte-
gration (DANDI) Archive (https://dandiarchive.org/dandiset/000402). 
EM imagery and segmentation volumes can also be selectively accessed 
using cloud-volume (https://github.com/seung-lab/cloud-volume), 
a Python API that simplifies interacting with large-scale image data. 
Mesh files describing the shape of cells can be downloaded with 
cloud-volume, which also provides features for convenient mesh 
analysis, skeletonization and visualization. These meshes can be 
decomposed and richly annotated for automated proofreading and 
morphological analysis of processes and spines using NEURD2 (https://
github.com/reimerlab/NEURD). Annotations on the structural data, 
such as synapses and cell body locations, can be queried via CAVE client, 
a Python interface to the Connectome Annotation Versioning Engine 
(CAVE) APIs (Fig. 6a,b). CAVE encompasses a set of microservices for 
collaborative proofreading and analysis of large-scale volumetric data.

The first collection of annotation tables available through CAVE client 
focus on the larger subvolume of the dataset, which we refer to within 
the infrastructure as Minnie65, and which has been the current focus of 
proofreading and ongoing analysis (Extended Data Table 3). The largest 
table describes connectivity, contains all 337.3 million synapses and  



442 | Nature | Vol 640 | 10 April 2025

Article
a b

500 μm

Pia

WM

Neurons with clean axons

c

eFunctionally-matched neuronsd

g

OPC
Olig

o

M
icr

og
lia

Astr
oc

yte

Per
icy

te

La
bell

ed L2 L3 L4
L5

ET
L5

IT
L5

NP
L6

CT
L6

IT

La
bell

ed

L6
W

M

Matched neuron for trace 6-2-4639
in EM imagery from CAVEclient

Matched neuron with trace 6-2-4639
in 2P structural stack from DataJoint

2
1

3

4
5

6

7

8

2

1

3

45

6

7

8

i

j

k

Exc
ita

to
ry

Inh
ibito

ry
Som

a

Unc
ha

ra
cte

riz
ed

M
an

ua
l m

atc
h

Aut
om

ati
c

Uncharacterized

P
os

ts
yn

ap
tic

 s
om

a

Excitatory

Fu
nc

tio
na

lly

 m
atc

he
d

 N
o

S
om

a

Con
ne

cts
 to

 ta
rg

et

Ta
rg

et 
ce

ll c
las

s

Ta
rg

et 
ce

ll t
yp

e

O
ut

pu
t s

yn
ap

se
s

L2

0

L5ET
L5IT

Basket

Martinotti

L3

Inhibitory

A
ut

om
at

ic

M
an

ua
l

Automatic
Manual

f

La
bell

ed

M
ar

tin
ot

ti

Neu
ro

gli
afo

rm

Bas
ke

t

Bipola
r

100

60

80

70

90

102 103 104

Number of output synapses

P
er

ce
nt

ag
e 

w
ith

 p
os

t-
sy

na
pt

ic
 s

om
a Martinotti

Basket

Neurogliaform

Bipolar

Excitatory

Martinotti

Basket

Neurogliaform

Bipolar

Excitatory

h

1 s

Presyn

P
os

ts
yn

 n
eu

ro
ns

0

0.5

1.0

N
or

m
al

iz
ed

 a
ct

iv
ity

Clip 1 Clip 2 Clip 3 Clip 4 Clip 5 Clip 6

...

Fig. 6 | Integrated analysis resources and examples. a–e, Cell body locations 
and cell-are type classifications, all nucleus detections shown in light grey.  
a, Non-neuronal cells, manually typed (dark outlines) and classifier-based  
(no outline)6. OPC, oligodendrocyte precursor cell. b, Excitatory cells, labelled 
by unsupervised clustering of morphological features4 (dark outline) and a 
model based on those labels6. L2, layer 2; L3, layer 3; L4, layer 4; L5ET, layer 5 
extratelencephalic; L5IT, layer 5 intratelencephalic; L5NP, layer 5 near-projecting; 
L6CT, layer 6 cortico-thalamic; L6IT, layer 6 intratelencephalic; L6WM, layer 6 
white matter. c, Inhibitory cells, classified by human experts4 and trained 
models6. d, Neurons registered to in vivo functional traces. e, Proofreading 
status of neurons in subvolume 65: black dots (fully proofread), red (cleaned of 
false merges but potentially incomplete) and blue (dendrites cleaned/extended). 
f, The number of output synapses per neuron shown in e versus the fraction 
mapped to a single postsynaptic soma, coloured by cell class. g, A fully proofread 
pyramidal cell (nucleus ID: 294657, segment ID: 864691135701676411) with 
postsynaptic soma locations shown as coloured dots (by cell class). Cells with 

functionally co-registered regions are outlined in dark green. h, Quantification 
of synapses associated with different categories of postsynaptic cells. The  
first column shows the fraction that map to a single postsynaptic soma. The 
second column shows the fraction of those that are excitatory or inhibitory. 
The third column shows the fraction of cells that are in each sub-class based  
on the model shown in b,c. The fourth column shows the proportion that map 
to functionally co-registered cells. The cell and its synapses are viewable at 
https://neuroglancer-demo.appspot.com/#!gs://microns-static-links/mm3/
data_fig/6f.json. i, EM image (i) and corresponding image from the 2p structural 
stack ( j) centred on the cell shown in g (yellow circle). Red arrowheads indicate 
blood vessels. k, Functional responses of the presynaptic (presyn) neuron  
(g; yellow) and its functionally co-registered postsynaptic (postsyn) targets. 
Heat maps show average %F/F traces for the presynaptic neuron and 
postsynaptic targets, sorted by synaptic strength, in response to oracle clips 
from functional scans.



Nature | Vol 640 | 10 April 2025 | 443

is searchable by presynaptic ID, postsynaptic ID and spatial location. In 
addition, there are several tables that describe the soma location of key 
cells, predictions for which cells are different non-neuronal (Fig. 6a), 
excitatory (Fig. 6b) and inhibitory (Fig. 6c) types. There are also anno-
tations that denote which cells have been functional co-registered 
(Fig. 6d) and which cells have been proofread to different degrees of 
completion (Fig. 6e). In this release, the only table available for Minnie35 
contains synapses, as its segmentation and alignment occurred later 
and little proofreading, annotation or analysis has been conducted 
within it. We expect that continued proofreading and analysis of the 
data will lead to updated and additional tables for both portions of the 
data in future data releases.

This collection of tools and public data enables analyses that inte-
grate questions of connectivity, morphology and functional properties 
of neurons. Here, we provide an example to suggest how the data might 
be used together. The power of the dataset lies in the fact that when 
an axon is proofread, it contains hundreds to more than ten thousand 
output synapses (Fig. 6f). Furthermore, between 60 and 95% of those 
outputs can be accurately mapped onto their postsynaptic targets 
with a known soma location, depending on the cell type and its spatial 
location in the volume (Fig. 6f). This is because the segmentation is 
highly accurate for dendritic inputs, with a 99% input precision based 
on comparing proofread with non-proofread dendrites. To seed an 
analysis with an as-complete-as-possible cell, one might begin by using 
the proofreading table to identify a neuron with complete axons and 
dendrites and querying for all the synaptic inputs and outputs for the 
cell, in this case a L2/3 cell in VISp (Fig. 6g). For this particular proof-
read neuron, 74.5% (1,053 out of 1,412 synapses) are onto objects with 
a single nucleus (as determined from automated detection), with 275 
synapses onto cells classified as inhibitory, 662 synapses onto cells 
classified as excitatory, and 116 synapses onto cells whose soma did 
not pass classification quality control (Fig. 6h). The remainder (25.4% 
359 out of 1.412 synapses) are onto orphan fragments, composed of a 
mix of disconnected spine heads and stretches of dendrite. By filtering 
the synaptic targets with functionally matched neurons (Fig. 6k), one 
can further identify which targets have been matched to the functional 
experiments (365 out of 1,412) and use DataJoint to query the functional 
data or read NWB files deposited in the DANDI data archive (Fig. 6i–k). 
In this case, the targets include pyramidal cells in both L2/3 and L5. 
Subsequent investigation could examine the morphology of such cells 
in detail, or consider functional responses of their targets. We have 
provided example notebooks that walk through the above examples 
and more to help users get started. Together, these data provide a plat-
form for analysis of the relationship between the synaptic structure, 
neuronal morphology and functional tuning of mouse visual circuits.

Cell types
Connectivity and morphology are key properties of cell types, and 
the scale of this dataset enables an unprecedented exploration of the 
anatomical diversity of cortical neurons as well as a need to relate 
known cell types to EM data. We have taken multiple approaches to 
addressing these challenges in the accompanying studies. Two pro-
jects3,4 applied data-driven methods to dendritic reconstructions 
to characterize excitatory neurons across cortical depth and visual 
areas, revealing intralaminar subtypes and inter-areal differences in 
populations. Another study linked transcriptomic types of inhibitory 
neurons to EM reconstructions, establishing a proof of concept for link-
ing molecular cell types to anatomical cell types that use morphology 
and synapse connectivity7. Although these studies used proofread or 
post-processed neuronal reconstructions, not all segmented neurons in 
the dataset were amenable to such analysis due to truncation by dataset 
boundaries or segmentation quality. To push cell typing even in such 
difficult cases, a fourth study showed that key features of the soma and 
nucleus of a cell alone was sufficient to predict cell classes such as glia, 

excitatory neuron or inhibitory neuron, as well as subclasses such as 
basket cells versus bipolar cells or microglia versus oligodendrocytes, 
or identify similar cells to a cell of interest6. Together, these approaches 
enable matching known cell types with EM neurons and using the EM 
data to discover new cell types.

The integration of cell-type classifications with additional modali ties 
enables a powerful set of tools for discovery. Examining the output 
of proofread neurons, which includes more than 900,000 synaptic 
connections between neurons, reveals key differences in the inter-
laminar communication between excitatory and inhibitory neurons 
(Fig. 7a–c). The size of the dataset also allows for a comprehensive 
analysis of cell-type connectivity, including tracing across one or more 
steps along the synaptic network. A major finding from multiple stud-
ies of the MICrONS dataset is the widespread specificity of connectiv-
ity exhibited by various inhibitory4,7 and excitatory5 cell types. As an 
example of such analysis, we can follow a collection of layer 3 pyrami-
dal neurons and compare their first-order (direct) connectivity onto 
excitatory cell types and inhibitory neurons as well as the second-order 
(two-hop) connectivity of those inhibitory neurons that are targeted 
by the layer 3 cells (Fig. 7d).

Discussion
EM is widely recognized as the gold standard for identifying structural 
features of synapses, and most datasets, including the output of the 
MICrONS project, were primarily created to answer questions related 
to circuit-level connectivity. Regardless of the original intent, the scale 
and high resolution of the MICrONS dataset offers information that is 
far richer and of broader interest than just connectivity. For example, 
the imagery also reveals the intracellular machinery of cells, including 
the morphology of subcellular structures such as the nucleus, mito-
chondria, endoplasmic reticulum and microtubules. Furthermore, the 
segmentation includes non-neuronal cells such as microglia, astro-
cytes, oligodendrocyte precursor cells and oligodendrocytes, as well 
the fine morphology of the cortical vasculature.

Advances and limits in large-scale EM
The scale of large functional and EM datasets presents a wealth of 
opportunities for analysis and discovery. With advances in microscopy 
and computing power, it is now possible to work with datasets that are 
orders of magnitude larger than just a few years ago with millions of 
synapses and tens of thousands of recorded neurons. Among the key 
opportunities presented by this data is the ability to identify patterns 
and trends that may be hidden in smaller datasets, the ability to iden-
tify and validate general principles at a larger scale, and the ability to 
perform more sophisticated analyses—since with more data, it is pos-
sible to use more complex algorithms and models including machine 
learning techniques. The accessibility of these datasets also enhances 
hypothesis-driven approaches by enabling scientists to investigate 
whether specific types of connectivity exist among different cell types 
of interest. Additionally, the scale of the data and the availability of 
exploration tools to facilitate the discovery of anomalies or contra-
dictions to current hypotheses and provide opportunities to address 
and resolve them effectively. Both of these approaches can help to 
identify patterns and trends that would be difficult to observe using 
smaller datasets.

However, larger datasets have limitations and challenges associated 
with them. When analysing the connectivity graph, it is essential to 
keep in mind that although, as shown by our results, the automatic 
segmentation of dendritic inputs is highly accurate, the automatic 
segmentation of axons is not as accurate. Therefore, it is essential to 
be aware of which processes have been proofread and to what extent. 
Additionally, it is worth considering that although each neuron in the 
dataset receives thousands of inputs, a percentage of synapses in the 
dataset are on detached spines. Depending on the scientific question 
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being asked, it is worth considering whether these detached spines may 
create bias in the conclusions drawn, such as distinguishing between 
excitatory and inhibitory inputs5.

In the functional data, it is important to recognize that photon scat-
tering and out-of-plane fluorescence may cause signal degradation and 
contamination with increasing depth from the pia surface, especially 
given the dense GCaMP6s expression in excitatory somas and neur-
ites39. Caution should be taken to disentangle true biological variation 
in neuronal tuning across layers from these optical artefacts, by either 
matching controls at the same depth, or validating the finding with a 

method that is less prone to these artefacts (such as electrophysiology 
or 2P microscopy with more sparse or targeted labelling). Furthermore, 
although all functional imaging was done in the same volume, it was 
done across several distinct imaging sessions. Technical factors as 
well as changes in the physiological state of the mouse should be taken 
into account when analysing functional recordings that were taken at 
different times. The simultaneous recordings of treadmill activity and 
pupillometry can be used to help account for variability due to state.

Developing and executing this pipeline took a large team effort, and 
so it is worth reflecting on the practical limitations and bottlenecks in 
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Fig. 7 | Connectivity matrices and analysis. a–c, Connectivity matrix for 
proofread neurons connecting to all postsynaptic targets of the predicted class: 
excitatory→excitatory (a); excitatory→inhibitory (b); inhibitory→excitatory (c). 
Each connection between two cells is represented by a dot, with the position on 
the x axis depicting the depth of the postsynaptic soma and the position on the 
y axis depicting the depth of the presynaptic cell. Dots are transparent, with 
darker shades indicate more connections between laminar depths. Layer 
boundaries are shown as dashed grey lines. d, First-order and second-order 
synaptic output heat maps of seven layer 3 pyramidal cells similar to the one 
shown in Fig. 6g. Left, total number of synapses that each layer 3 pyramidal cell 
makes with each of their order 1 postsynaptic excitatory cell types. Greyscale 

heat map (top) showing number of synapses that each L3 pyramidal cell makes 
with their individual order 1 postsynaptic inhibitory partners, sorted by 
synaptic targeting types and soma depth from the pia to white matter (WM). 
Coloured heat map (bottom) showing total number of synapses that each order 
1 inhibitory partner makes with each of their postsynaptic order 2 excitatory 
partners of layer 3 pyramidal cells, colour-coded by the synaptic targeting 
types of order 1 inhibitory partners. Inhibitory cell subclasses are represented 
as follows4: DTC, distal targeting cells (also known as Martinotti cells); PTC, 
proximal targeting cells (also known as basket cells); ITC, inhibitory targeting 
cells; STC, sparse targeting cells (mostly neurogliaform). L3a, layer 3a.
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generating datasets of this scale. Proofreading and analysis remains 
the largest overall expense in terms of person hours, although it can be 
distributed across diverse scientific interests. Improvements in data 
quality, such as folds, membrane clarity and errors in computational 
image alignment are the most pressing technical issues that appear to 
limit the quality of the automated segmentation. The present dataset 
has already collected more than a million manual corrections to the 
automated segmentation, which are available for querying via CAVE1. 
We hope that these edits can be leveraged in the future to make more 
accurate automated segmentation, or a more extensively automated 
edit approach that can further increase the efficiency of proofread-
ing. Analysis questions are often diverse in nature, so it is difficult to 
predict all the computational steps that are required, but having a 
more general framework and scalable technique of identifying spe-
cific features (such as cell types, spines and organelles) within the 
dataset would help increase efficiency, rather than using the special-
ized pipelines we used here. Some research in this direction has been 
applied to this dataset40. In terms of marginal costs of data genera-
tion, human labour remains the largest, followed by computational 
costs of automated segmentation and then the material costs of grid 
tape. Beyond these, there are no fundamental technical limitations 
to producing more data at this scale for other individual animals, 
species or brain regions.

Comparison with other EM studies
The importance of high-resolution structural data was recognized 
early in invertebrate systems, particularly in the worm41,42. However, 
it is in the fly that connectomics as the pursuit of complete connec-
tivity diagrams has had the strongest renaissance. EM volumes now 
describe the Drosophila nervous system at both larval43 and adult34,44 
life stages and in both central brain34,44 and nerve cord45. The size of 
the volume required to capture most central neurons and their synap-
tic connections in the fly is well-suited to EM. The whole fly brain fills 
about one-third of a 750#×#350#×#250#µm3 bounding box, and the nerve 
cord fills about one-quarter of a 950#×#320#×#200#µm3 bounding box45, 
well within the bounds of contemporary EM methods. The creation of 
these datasets has spurred investment in both manual skeletonized 
reconstruction and automated dense reconstructions33,44,46, with both 
centralized and community-minded efforts to proofread and mine 
them for biological insight26,44,47–49. In addition to the many targeted 
reconstructions in these datasets, large-scale proofread reconstruc-
tions from these datasets now include a manually traced full larval brain, 
a densely segmented and extensively proofread partial central brain 
and a densely segmented and proofread complete adult brain. These 
datasets collectively span nearly the entire fly nervous system and are 
driving a revolution in how fly systems neuroscience is being studied.

In the mammalian system, there is currently no EM dataset that con-
tains a complete area, let alone a complete brain. There is however, as 
mentioned above, an established culture of making data open and pub-
licly available24,26,50–52. In the past 10 years, there have been only three 
other rodent EM datasets with publicly available reconstructions that 
are at least 5% the size of the MICrONS multi-area dataset presented 
in this Article. One dataset is a 424#×#429#×#274#µm3 volume from P26 
rat entorhinal cortex53, with skeleton reconstructions of incomplete 
dendrites of 667 neurons, and skeleton reconstructions of local axons 
of 22 excitatory neurons averaging 550#µm in length. A dataset from 
mouse lateral geniculate nucleus that is 500#×#400#×#280#µm3 in size 
and contains around 3,000 neuronal cell bodies is publicly available54. 
This dataset is large enough that dendritic reconstructions from the 
centre of the volume are nearly complete, and it has a sparse manual 
segmentation, covering around 1% of the volume, which includes 304 
thalamocortical cells and 162 axon fragments. The third dataset is a 
424#×#453#×#360#µm volume covering layer 4 of mouse primary soma-
tosensory cortex, with manual reconstruction of 52 interneuronal 
dendrites and many axons55.

It is critically important to compare circuit architectures across 
regions and species. The neocortex is of particular interest as it is 
expanded in human compared to mouse. There is already a large body of 
literature on the comparative aspects between the cortex of humans and 
of other species. This research includes morphological and electrical 
properties of neurons, density of spines, synapses and neurons, as well 
as biophysical properties and morphology of synaptic connections56–58. 
Of note, a recent EM connectomics dataset of the human medial tem-
poral gyrus59 vastly expands the possibilities of this comparison. This 
is a cubic millimetre scale volume, with a maximum extent of 3#×#2#mm 
and a thickness of 150#µm. This human dataset is publicly available, 
including a dense automated reconstruction of all objects, with around 
16,000 neurons, 130 million synapses and an initial release of 104 proof-
read cells. These human connectomics data will doubtless yield critical 
insights. One practical difference from the volume described here is 
the aspect ratio of the human data, which is matched to the greater 
thickness of human cortex compared to mouse. To some extent, the 
wide and thin dimensions of the human dataset trades off complete-
ness of local neurons and circuits in order to sample all layers, whereas 
the nearly cubic volume described here is more suitable for studying 
local circuits and long-range connections across areas. With the excep-
tion of the study by Hua et al.55, the other studies mentioned above do 
not have corresponding functional characterizations of the neurons 
reconstructed in EM. By contrast, the functional connectomics data 
we have released includes both anatomy and activity of the same cells.

Opportunity to map cell types at scale
In the mammalian nervous system, transcriptomics has been the most 
scalable approach for cell-type taxonomies. In smaller organisms such 
as the fly, for which we have both extensive gene expression maps, 
whole-brain neuronal reconstructions and nearly complete connec-
tomes, integration across modalities has been a powerful engine of 
discovery. Moreover, the availability of connectomes in the fly have 
enabled a much higher resolution of cell types, with novel taxonomies 
and new cell types being discovered44. The accompanying studies4–7 
suggest that a similar path to cell-type discovery will be enabled by 
large-scale EM in the mammalian system with novel cell types and novel 
patterns of connectivity.

This wealth of structural data on cell types and circuits provides 
strong constraints on the nature of the computations that the brain 
performs, whereas genes provide constraints on how this structure is 
built and operates. Linking connectomics to transcriptomics is a first 
step for merging connectivity with molecular information and building 
cell-type-specific tools that are informed by how neurons connect. In 
one of the accompanying studies7, we offer a proof of concept on how 
to achieve this link for Martinotti cells, using morphology as a common 
feature to integrate PatchSeq and EM datasets, suggesting a broader 
pathway for multimodal integration.

In this respect, our work parallels another milestone of connectom-
ics, the completion of the Drosophila connectome34,35,44,46; only 20% of 
the neuron types described in the EM connectome of the central brain 
were previously described in the literature44. There is however an impor-
tant difference to be drawn with Drosophila, in which a cell type often 
consists of just a few neurons that share similar functional properties 
that are reproducible across individuals. Owing to this stereotypy, a 
connectome mapped in one fly can usually be used by researchers 
studying neuronal function in other flies. Rules of connectivity based 
on cell types have proved sufficient for understanding and modelling 
many functions of increasingly complex neural circuits60,61. Conversely, 
a single cell type in a mammalian brain encompasses a huge number 
of cells, which generally exhibit different tuning preferences. This is 
why it is important to combine cortical connectomics with functional 
studies of the same neurons in the same brain. This is also why the 
mapping of cortical connectivity must go beyond rules that depend 
solely on cell types.
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Importance of functional connectomics
Almost 50 years after Crick described his “impossible” experiment, 
we have provided a first draft, but its full promise will take some time 
to achieve. Most importantly, complete segmentation still requires 
an extensive amount of proofreading for the largest datasets, such 
as the millimetre scale cortical reconstruction reported here. Simi-
larly, simultaneously recording single action potentials from tens of 
thousands of neurons is constrained by sensor dynamics and optical 
sampling constraints.

Nonetheless, there has been steady progress. The first structure–
function studies that combined 2P microscopy and EM examined how 
the wiring of mouse retina27–31 and mouse visual cortex24 related to 
functional properties. Lee et al.25 related visual tuning properties of 
50 functionally characterized neurons in primary visual cortex to their 
connectivity measured via EM reconstruction of a 450#×#450#×#150#µm 
volume. One thousand synapses were mapped by hand, yielding a 
graph of connectivity between 29 orientation-tuned cells (a subset 
of the characterized cells, as in the current dataset). Subsequently, 
our consortium used dense segmentation plus proofreading of a 
250#×#140#×#90#µm dataset26 from mouse layer 2/3 visual cortex, yield-
ing many more overall connections, but still only twice the number 
of functionally characterized cells. Perhaps most impressively, In the 
olfactory bulb of the zebrafish, Wanner et al.62 manually reconstructed 
almost all neurons (n#=#1,003) within a 72#×#108#×#119#µm3 volume, in 
which responses to odours were measured in vivo. Their analysis of 
the 18,483 measured connections revealed how this structural network 
mediated de-correlation and variance normalization of the functional 
responses and demonstrates how larger measurements of network 
structure and function can provide mechanistic insights.

By contrast, the data released here contains tens of thousands of 
neurons with functionally characterized responses to visual stimuli and, 
because it is densely segmented and contains complete dendritic and 
local axonal arbors of centrally located cells, the opportunities to study 
connected neurons are orders of magnitude greater. As an example, 
from just 94 proofread excitatory axons, one can query 69,962 output 
synapses, which map to 20,112 distinct neuron soma in the volume.

Moreover, inspired by recent advancements in artificial intelligence, 
we also created a functional digital twin of the MICrONS mouse that 
can enable a more comprehensive analysis of function10,11. Specifically, 
we developed a ‘foundation model’11 for the mouse visual cortex using 
deep learning that was trained using large-scale datasets from multiple 
visual cortical areas and mice, recorded while they viewed ecological 
videos. The model demonstrated its generalization abilities by accu-
rately predicting neuronal responses, not only to natural videos, but 
also to various new stimulus domains, such as coherent moving dots 
and noise patterns, as confirmed through in vivo testing10,11. By apply-
ing the foundation model to the MICrONS mouse data, we created a 
functional digital twin of this mouse, paving the way for a systematic 
exploration of the relationship between circuit structure and function 
for tens of thousands of neurons connected with millions of synapses. 
Combined with the anatomical data from this mouse, we can investigate 
the structure–function relationships for specific visual computations8,9 
and decipher the principles that determine the synaptic network in 
the cortex10,11.

The most important goal of connectomics is to map the connec-
tions between cells, from cell body to axon to synapse, and back to cell 
body. In a large volume with complete and segmented dendrites and 
local axons, this can be achieved. Currently, the dendrites are nearly 
completely segmented (Fig. 6), but many axons require proofreading. 
A goal in future years will be to complete the segmentation through a 
combination of additional machine learning and improved proofread-
ing. This echoes the successful strategy in the reconstruction of the 
fly adult brain, which started with the TEM volume34, then added the 
tools developed by the MICrONS programme for segmentation and 

proofreading and led to the complete connectome35. If, in addition, 
most cell bodies have physiology with single-spike resolution, then 
Crick’s experimental challenge will be met. These remaining hurdles 
may take some time to clear, but the next steps are becoming apparent.
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Methods

Mouse lines
All procedures were approved by the Institutional Animal Care and Use 
Committee (IACUC) of Baylor College of Medicine. All results described 
here are from a single male mouse, age 65 days at onset of experiments, 
expressing GCaMP6s in excitatory neurons via Slc17a7-Cre65 and Ai16266 
heterozygous transgenic lines (recommended and generously shared 
by H. Zeng at Allen Institute for Brain Science; JAX stock 023527 and 
031562, respectively). In order to select this animal, 31 (12 female, 19 
male) GCaMP6-expressing animals underwent surgery as described 
below. Of these, eight animals were chosen based on a variety of criteria 
including surgical success and animal recovery, the accessibility of 
lateral higher visual areas in the cranial window, the degree of vascu-
lar occlusion, and the success of cortical tissue block extraction and 
staining. Of these 8 animals, one was chosen for 40-nm slicing and EM 
imaging based on overall quality using these criteria.

Timeline
Mouse birth date: 19 December 2017
Surgery: 21 February 2018 (P64)
2P imaging start: 4 March 2018 (P75)
2P imaging end: 9 March 2018 (P80)
Structural Stack: 21 March 2018 (P83)
Perfusion: 16 March 2018 (P87)

Surgery
Anaesthesia was induced with 3% isoflurane and maintained with 
1.5–2% isoflurane during the surgical procedure. Mice were injected 
with 5–10#mg#kg−1 ketoprofen subcutaneously at the start of the sur-
gery. Anaesthetized mice were placed in a stereotaxic head holder 
(Kopf Instruments) and their body temperature was maintained at 
37#°C throughout the surgery using a homeothermic blanket system 
(Harvard Instruments). After shaving the scalp, bupivicane (0.05#ml, 
0.5%, Marcaine) was applied subcutaneously, and after 10–20#min an 
approximately 1#cm2 area of skin was removed above the skull and the 
underlying fascia was scraped and removed. The wound margins were 
sealed with a thin layer of surgical glue (VetBond, 3#M), and a 13-mm 
stainless steel washer clamped in the headbar was attached with dental 
cement (Dentsply Grip Cement). At this point, the mouse was removed 
from the stereotax and the skull was held stationary on a small plat-
form by means of the newly attached headbar. Using a surgical drill 
and HP 1/2 burr, a 4-mm-diameter circular craniotomy was made cen-
tred on the border between primary visual cortex and lateromedial 
visual cortex (V1, lateral–medial; 3.5#mm lateral of the midline, ~1#mm 
anterior to the lambda suture), followed by a durotomy. The exposed 
cortex was washed with artificial cerebrospinal fluid (25#mM NaCl, 
5#mM KCl, 10#mM glucose, 10#mM HEPES, 2#mM CaCl2, 2#mM MgSO4) 
with 0.3#mg#ml−1 gentamicin sulfate (Aspen Veterinary Resources). The 
cortical window was then sealed with a 4-mm coverslip (Warner Instru-
ments), using cyanoacrylate glue (VetBond). The mouse was allowed 
to recover for 1 day prior to imaging. After imaging, the washer was 
released from the headbar and the mouse was returned to the home 
cage. Prior to surgery and throughout the imaging period, mice were 
singly housed and maintained on a reverse 12-h light cycle (off at 11:00, 
on at 23:00).

2P imaging
Mice were head-mounted above a cylindrical treadmill and calcium 
imaging was performed using Chameleon Ti-Sapphire laser (Coher-
ent) tuned to 920#nm and a large FOV mesoscope67 equipped with a 
custom objective (excitation NA 0.6, collection NA 1.0, 21#mm focal 
length). Laser power after the objective was increased exponentially 
as a function of depth from the surface according to: 

P P= × e z L
0

( / )z

Here P is the laser power used at target depth z, P0 is the power used 
at the surface (not exceeding 10#mW), and Lz is the depth constant (not 
less than 150#µm). Maximum laser output of 115#mW was used for scans 
approximately 450–500#µm from the surface and below.

Monitor positioning
Visual stimuli were presented to the left eye with a 31.8#×#56.5#cm 
(height#×#width) monitor (ASUS PB258Q) with a resolution of 
1,080#×#1,920 pixels positioned 15#cm away from the eye. When the 
monitor is centred on and perpendicular to the surface of the eye at 
the closest point, this corresponds to a visual angle of ~3.8°#cm−1 at the 
nearest point and 0.7°#cm−1 at the most remote corner of the moni-
tor. As the craniotomy coverslip placement during surgery and the 
resulting mouse positioning relative to the objective is optimized for 
imaging quality and stability, uncontrolled variance in animal skull 
position relative to the washer used for head-mounting was compen-
sated with tailored monitor positioning on a six-dimensional monitor 
arm. The pitch of the monitor was kept in the vertical position for all 
animals, while the roll was visually matched to the roll of the animal’s 
head beneath the headbar by the experimenter. In order to optimize 
the translational monitor position for centred visual cortex stimulation 
with respect to the imaging FOV, we used a dot stimulus with a bright 
background (maximum pixel intensity) and a single dark square dot 
(minimum pixel intensity). Dot locations were randomly ordered from 
a 5#×#8 grid to tile the screen, with 15 repetitions of 200#ms presenta-
tion at each location. The final monitor position for each animal was 
chosen in order to centre the population receptive field of the scan 
field ROI on the monitor, with the yaw of the monitor visually matched 
to be perpendicular to and 15#cm from the nearest surface of the eye at 
that position. An L-bracket on a six-dimensional arm was fitted to the 
corner of the monitor at this location and locked in position, so that 
the monitor could be returned to the chosen position between scans 
and across days.

Imaging site selection
The craniotomy window was leveled with regards to the objective with 
six degrees of freedom, five of which were locked between days to 
allow us to return to the same imaging site using the z axis. Pixel-wise 
responses from a 3,000#×#3,000#µm ROI spanning the cortical window 
(150#µm from surface, five 600#×#3,000#µm fields, 0.2#pixels per µm) to 
drifting bar stimuli were used to generate a sign map for delineating 
visual areas68. Our target imaging site was a 1,200#×#1,100#×#500#µm 
volume (anteroposterior#×#mediolateral#×#radial depth) spanning 
layer 2 to layer 6 at the conjunction of VISp and three higher visual 
areas: VISlm, VISrl and VISal69. This resulted in an imaging volume 
that was roughly 50% VISp and 50% higher visual area (HVA). This 
target was chosen to maximize the number of visual areas within the 
reconstructed cortical volume, as well as maximizing the overlap in 
represented visual space. The imaging site was further optimized to 
minimize vascular occlusion and to minimize motion artefact, espe-
cially where the brain curves away from the skull/coverslip towards the  
lateral aspect.

Once the imaging volume was chosen, a second retinotopic mapping 
scan with the same stimulus was collected at 12.6#Hz and matching the 
imaging volume FOV with four 600#×#1,100#µm fields per frame at 0.4 
pixels per µm xy resolution to tile a 1,200#×#1,100 µm FOV at 2 depths 
(2 planes per depth, with no overlap between coplanar fields). Area 
boundaries on the sign map were manually annotated.

2P functional imaging
Of 19 completed scans over 6 days of imaging, 14 are described here 
(Extended Data Table 1). Scan placement targeted 10–15#µm increments 
in depth to maximize coverage of the volume in depth.



For 11 scans, imaging was performed at 6.3#Hz, collecting eight 
620#×#1,100 µm fields per frame at 0.4 pixel per µm xy resolution to 
tile a 1,200#×#1,100 µm (width × height) FOV at four depths (two planes 
per depth, 40 µm overlap between coplanar fields).

For 2 scans, imaging was performed at 8.6#Hz, collecting six 
620#×#1,100#µm fields per frame at 0.4 pixels per µm xy resolution to 
tile a 1,200#×#1,100#µm (width × height) FOV at 3 depths (2 planes per 
depth, 40#µm overlap between coplanar fields).

For 1 scan, imaging was performed at 9.6#Hz, collecting four 
620#×#1,000 µm fields per frame at 0.6 pixels per µm xy resolution to 
tile a 1,200#×#1,000 µm (width × height) FOV at 2 depths (2 planes per 
depth, 40#µm overlap between coplanar fields).

The higher-resolution scans were designed to enable future analysis 
efforts to extract signals from large apical dendrites for example using 
EM-Assisted Source Extraction (EASE70). In addition to locking the 
craniotomy window mount between days, the target imaging site was 
manually matched each day to preceding scans within several micro-
metres using structural features including horizontal blood vessels 
(which have a distinctive z-profile) and patterns of somata (identifiable 
by GCaMP6s exclusion as dark spots).

The full 2P imaging processing pipeline is available at (https://
github.com/cajal/pipeline). Raster correction for bidirectional scan-
ning phase row misalignment was performed by iterative greedy 
search at increasing resolution for the raster phase resulting in the 
maximum cross-correlation between odd and even rows. Motion cor-
rection for global tissue movement was performed by shifting each 
frame in x and y to maximize the correlation between the cross-power 
spectra of a single scan frame and a template image, generated from 
the Gaussian-smoothed average of the Anscombe transform from 
the middle 2,000 frames of the scan. Neurons were automatically 
segmented using constrained non-negative matrix factorization, 
then deconvolved to extract estimates of spiking activity, within the 
CaImAn pipeline71. Cells were further selected by a classifier trained 
to separate somata versus artefacts based on segmented cell masks, 
resulting in exclusion of 8.1% of masks. The functional data is available 
in a DataJoint72 database and can also be read as NWB files deposited 
in the DANDI data archive73.

2P structural stack
Approximately 55#min prior to collecting the stack, the mouse was 
injected subcutaneously with 60#µl of 8.3#mM Dextran Texas Red fluo-
rescent dye (Invitrogen, D3329). The stack was composed of 30 repeats 
of three 620#×#1,300#µm (width × height) fields per depth in 2 channels 
(green and red, respectively), tiling a 1,400#×#1,300 µm FOV (460#µm 
total overlap in width) at 335 depths from 21#µm above the surface to 
649#µm below the surface. The green channel average image across rep-
etitions for each field was enhanced with local contrast normalization 
using a Gaussian filter to calculate the local pixel means and standard 
deviations. The resulting image was then Gaussian smoothed and sharp-
ened using a Laplacian filter. Enhanced and sharpened fields were inde-
pendently stitched at each depth. The resulting stitched planes were 
independently horizontally and vertically aligned by maximizing the 
correlation of the cross-power spectrum of their Fourier transforma-
tions. Finally, the resulting alignment was detrended in z using a Hann 
filter with a size of 60 µm to remove the influence of vessels passing 
through the fields. The resulting transform was applied to the origi-
nal average images resulting in a structural 2P 1,412#×#1,322#×#670#µm 
(width × height × depth) volume at 0.5#×#0.5#×#0.5 pixels per µm resolu-
tion in both red and green channels.

Owing to tissue deformation from day to day across such a wide FOV, 
some cells are recorded in more than one scan. To assure we count cells 
only once, we subsample our recorded cells based on proximity in 3D 
space. Functional scan fields were independently registered using an 
affine transformation matrix with 9 parameters estimated via gradient 
ascent on the correlation between the sharpened average scanning 

plane and the extracted plane from the sharpened stack. Using the 3D 
centroids of all segmented cells, we iteratively group the closest 2 cells 
from different scans until all pairs of cells are at least 10#µm apart or a 
further join produces an unrealistically tall mask (20 µm in z). Sequen-
tial registration of sections of each functional scan into the structural 
stack was performed to assess the level of drift in the z dimension. All 
scans had less than 10-µm drift over the 1.5-h recording, and for most 
of them drift was limited to <5#µm.

Fields from the FOV-matched retinotopy scan described above were 
registered into the stack using the same approach, and the manually 
annotated area masks were transformed into the stack. These area 
masks were extended vertically across all depths, and functional units 
inherit their area membership from their stack xy coordinates.

Eye and face camera
Video images of the eye and face of the mouse were captured through-
out the experiment. A hot mirror (Thorlabs FM02) positioned between 
the animal’s left eye and the stimulus monitor was used to reflect an 
IR image onto a camera (Genie Nano C1920M, Teledyne Dalsa) with-
out obscuring the visual stimulus. An infrared 940#nm LED (Thorlabs 
M940L2) illuminated the right side of the animal, backlighting the 
silhouette of the face. The position of the mirror and camera were 
manually calibrated per session and focused on the pupil. FOV was 
manually cropped for each session (ranging from 828#×#1,217 pixels to 
1,080#×#1920 pixels at ~20#Hz), such that the FOV contained the superior, 
frontal, and inferior portions of the facial silhouette as well as the left 
eye in its entirety. Frame times were time stamped in the behavioural 
clock for alignment to the stimulus and scan frame times. Video was 
compressed using Labview’s MJPEG codec with quality constant of 600 
and stored the frames in AVI file.

Light diffusing from the laser during scanning through the pupil was 
used to capture pupil diameter and eye movements. Notably, scans 
using wide ranges in laser power to scan both superficial and deep 
planes resulted in a variable pupil intensity between frames. A custom 
semi-automated user interface in Python was built for dynamic adap-
tation of fitting parameters throughout the scan to maximize pupil 
tracking accuracy and coverage. The video was manually cropped to 
a rectangular region that includes the entirety of the eye at all time 
points. The video was further manually masked to exclude high inten-
sity regions in the surrounding eyelids and fur. In cases where a whisker 
is present and occluding the pupil at some time points, a merge mask 
was drawn to bridge ROIs drawn on both sides of the whisker into a 
single ROI. For each frame, the original and filtered image was visible 
to the user. The filtered image was an exponentially weighted temporal 
running average, which undergoes exponentiation, Gaussian blur, 
automatic Otsu thresholding into a binary image, and finally pixel-wise 
erosion/dilation. In cases where only one ROI was present, the contour 
of the binary ROI was fit with an ellipse by minimizing least squares 
error, and for ellipses greater than the minimum contour length the 
xy centre and major and minor radii were stored. In cases where more 
than one ROI was present, the tracking was automatically halted until 
the user either resolved the ambiguity, or the frame was not tracked 
(a NaN (Not a Number) is stored). Processing parameters were under 
dynamic control of the user, with instructions to use the minimally suf-
ficient parameters that result in reliably and continuous tracing of the 
pupil, as evidenced by plotting of the fitted ROI over the original image. 
Users could also return to previous points in the trace for re-tracking 
with modified processing parameters, as well as manually exclude 
periods of the trace in which insufficient reliable pupil boundary was 
visible for tracking.

Treadmill
The mouse was head-restrained during imaging but could walk on a 
treadmill. Rostro-caudal treadmill movement was measured using a 
rotary optical encoder (Accu-Coder 15T-01SF-2000NV1ROC-F03-S1) 
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with a resolution of 8,000 pulses per revolution, and was recorded at 
~57–100#Hz in order to extract locomotion velocity.

Stimulus composition
The stimulus was designed to cover a sufficiently large feature space to 
support training highly accurate models that predict neural responses 
to arbitrary visual stimuli11,38,74,75. Each scan stimulus was approximately 
84#min in duration and comprised:
• Oracle natural videos: 6 natural video clips, 2 from each category. 10#s 

each, 10 repeats per scan, 10#min total. Conserved across all scans.
• Unique natural videos: 144 natural videos, 48 from each category. 10#s 

each, 1 repeat per scan, 24#min total. Unique to each scan.
• 2× repeat natural videos: 90 natural videos, 30 from each category. 

10#s each, 2 repeats (one in each half of the scan), 30#min total. Con-
served across all scans.

• Local directional parametric stimulus (Trippy): 20 seeds, 15#s each,  
2 repeats (one in each half of the scan), 10#min total. 10 seeds con-
served across all scans, 10 unique to each scan.

• Global directional parametric stimulus (Monet2): 20 seeds, 15#s each,  
2 repeats (one in each half of the scan), 10#min total. 10 seeds con-
served across all scans, 10 unique to each scan.

Each scan was also preceded by 0.15–5.5#min with the monitor on, 
and followed by 8.3–21.2#min with the monitor off, in order to collect 
spontaneous neural activity.

Natural visual stimulus
The visual stimulus was composed of dynamic stimuli, primarily includ-
ing natural video but also including generated parametric stimuli with 
strong local or global directional component. Natural video clips were 
10#s clips from one of three categories:
• Cinematic, from the following sources: Mad Max: Fury Road (2015), 

Star Wars: Episode VII—The Force Awakens (2015), The Matrix 
(1999), The Matrix Reloaded (2003), The Matrix Revolutions (2003), 
Koyaanisqatsi: Life Out of Balance (1982), Powaqqatsi: Life in Trans-
formation (1988) and Naqoyqatsi: Life as War (2002).

• Sports-1M collection37, with the following keywords: cycling, moun-
tain unicycling, bicycle, BMX, cyclo-cross, cross-country cycling, 
road bicycle racing, downhill mountain biking, freeride, dirt jump-
ing, slopestyle, skiing, skijoring, Alpine skiing, freestyle skiing, 
Greco-Roman wrestling, luge, canyoning, adventure racing, street-
luge, riverboarding, snowboarding, mountainboarding, aggressive 
inline skating, carting, freestyle motocross, f1 powerboat racing, 
basketball and base jumping.

• Rendered 3D video of first-person POV random exploration of a virtual 
environment with moving objects, produced in a customized version 
of Unreal Engine 4 with modifications that enable precise control and 
logging of frame timing and camera positions to ensure repeatability 
across multiple rendering runs. Environments and assets were pur-
chased from Unreal Engine Marketplace. Assets chosen for diversity 
of appearance were translated along a piecewise linear trajectory, and 
rotated with a piecewise constant angular velocity. Intervals between 
change points were drawn from a uniform distribution from 1 to 5#s. If 
a moving object encountered an environmental object, it bounced off 
and continued along a linear trajectory reflected across the surface 
normal. The first-person POV camera followed the same trajectory 
process as the moving objects. Light sources were the default for the 
environment. Latent variable images were generated by re-generating 
the scenes and trajectories, rendering different properties, including 
absolute depth, object identification number and surface normals.

All natural videos were temporally resampled to 30 frames per sec-
ond, and were converted to greyscale with 256#×#144 pixel resolution 
with FFmpeg (ibx264 at YUV4:2:0 8#bit). Stimuli were automatically 
filtered for upper 50th percentile Lucas–Kanade optical flow and 

temporal contrast of the central region of each clip. All natural videos 
included in these experiments were further manually screened for 
unsuitable characteristics (for example, fragments of rendered videos 
in which the first-person perspective would enter a corner and become 
‘trapped’ or follow an unnatural camera trajectory, or fragments of 
cinematic or Sports-1M containing screen text or other post-processing 
editing).

Global directional parametric stimulus
To probe neuronal tuning to orientation and direction of motion, a 
visual stimulus (Monet2) was designed in the form of smoothened 
Gaussian noise with coherent orientation and motion. In brief, an 
independently identically distributed (i.i.d.) Gaussian noise video 
was passed through a temporal low-pass Hamming filter (4#Hz) and 
a 2D Gaussian spatial filter (σ#=#3.0° at the nearest point on the mon-
itor to the mouse). Each 15-s block consisted of 16 equal periods of 
motion along one of 16 unique directions of motion between 0–360° 
with a velocity of 42.8°#s−1 at the nearest point on the monitor. The 
video was spatial filtered to introduce a spatial orientation bias per-
pendicular to the direction of movement by applying a bandpass 
Hanning filter G(ω; c) in the polar coordinates in the frequency domain 
for ω φ θ= −  where φ is the polar angle coordinate and θ is the move-
ment direction θ. Then:

G ω c c H cω( ; ) = ( )

and

H ω ω ω π( ) =
1
2

+
1
2
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Here, c#=#2.5 is an orientation selectivity coefficient. At this value, the 
resulting orientation kernel’s size is 72° full width at half maximum in 
spatial coordinates.

Local directional parametric stimulus Trippy
To probe the tuning of neurons to local spatial features including orien-
tation, direction, spatial and temporal frequency, the Trippy stimulus 
was synthesized by applying the cosine function to a smoothened noise 
video. In brief, a phase movie was generated as an i.i.d. uniform noise 
video with 4#Hz temporal bandwidth. The video was up-sampled to 
60#Hz with the Hanning temporal kernel. An increasing trend of 8(#s−1 
was added to the video to produce drifting grating movements whereas 
the noise component added local variations of the spatial features. The 
video was spatially up-sampled to the full screen with a 2D Gaussian 
kernel with a sigma of 5.97#cm or 22.5° at the nearest point. The result-
ing stimulus yielded the local phase video of the gratings, from which 
all visual features are derived analytically.

Stimulus alignment
A photodiode (TAOS TSL253) was sealed to the top left corner of the 
monitor, where stimulus sequence information was encoded in a 
three-level signal according to the binary encoding of the flip number 
assigned in order. This signal was recorded at 10#MHz on the behaviour 
clock (MasterClock PCIe-OSC-HSO-2 card). The signal underwent a sine 
convolution, allowing for local peak detection to recover the binary 
signal. The encoded binary signal was reconstructed for 89% of trials. 
A linear fit was applied to the trial timestamps in the behavioural and 
stimulus clocks, and the offset of that fit was applied to the data to align 
the two clocks, allowing linear interpolation between them.

Oracle score
We used six natural video conditions that were present in all scans  
and repeated ten times per scan to calculate an oracle score repre-
senting the reliability of the trace response to repeated visual stimuli.  



This score was computed as the jackknife mean of correlations between 
the leave-one-out mean across repeated stimuli with the remaining trial.

Tissue preparation
After optical imaging at Baylor College of Medicine, candidate mice 
were shipped via overnight air freight to the Allen Institute. All pro-
cedures were carried out in accordance with the Institutional Animal 
Care and Use Committee at the Allen Institute for Brain Science. All 
mice were housed in individually ventilated cages, 20–26#°C, 30–70% 
relative humidity, with a 12-h light:dark cycle. Mice were transcardi-
ally perfused with a fixative mixture of 2.5% paraformaldehyde, 1.25% 
glutaraldehyde, and 2#mM calcium chloride, in 0.08#M sodium caco-
dylate buffer, pH 7.4. After dissection, the neurophysiological recording 
site was identified by mapping the brain surface vasculature. A thick 
(1,200-µm) slice was cut with a vibratome and post-fixed in perfusate 
solution for 12–48#h. Slices were extensively washed and prepared for 
reduced osmium treatment based on the protocol of Hua et al.76. All 
steps were performed at room temperature, unless indicated other-
wise. Osmium tetroxide (2%, 78#mM) with 8% v/v formamide (1.77#M) 
in 0.1#M sodium cacodylate buffer, pH 7.4, for 180#min, was the first 
osmication step. Potassium ferricyanide 2.5% (76#mM) in 0.1#M sodium 
cacodylate, 90#min, was then used to reduce the osmium. The second 
osmium step was at a concentration of 2% in 0.1#M sodium cacodylate, 
for 150#min. Samples were washed with water, then immersed in thiocar-
bohydrazide (TCH) for further intensification of the staining (1% TCH 
(94#mM) in water, 40#°C, for 50#min). After washing with water, samples 
were immersed in a third osmium immersion of 2% in water for 90#min. 
After extensive washing in water, lead aspartate (Walton’s (20#mM lead 
nitrate in 30#mM aspartate buffer, pH 5.5), 50#°C, 120#min) was used to 
enhance contrast. After two rounds of water wash steps, samples pro-
ceeded through a graded ethanol dehydration series (50%, 70%, 90% 
w/v in water, 30#min each at 4#°C, then 3×#100%, 30#min each at room 
temperature). Two rounds of 100% acetonitrile (30#min each) served 
as a transitional solvent step before proceeding to epoxy resin (EMS 
Hard Plus). A progressive resin infiltration series (1:2 resin:acetonitrile 
(33% v/v), 1:1 resin:acetonitrile (50% v/v), 2:1 resin acetonitrile (66% v/v), 
then 2×#100% resin, each step for 24#h or more, on a gyrotary shaker) 
was done before final embedding in 100% resin in small coffin molds. 
Epoxy was cured at 60#°C for 96#h before unmolding and mounting on 
microtome sample stubs for trimming.

The surface of the brain in the neurophysiology ROI was highly 
irregular, with depressions and elevations that made it impossible 
to trim all the resin from the surface of the cortex without removing 
layer 1 (L1) and some portions of layer 2 (L2). Though empty resin 
increases the number of folds in resulting sections, we left some resin 
so as to keep the upper layers (L1 and L2) intact to preserve inter-areal 
connectivity and the apical tufts of pyramidal neurons. Similarly, 
white matter was also maintained in the block to preserve inter-areal 
connections despite the risk of increased sectioning artefacts that 
then have to be corrected through proofreading.

Ultrathin sectioning
The sections were then collected at a nominal thickness of 40#nm using 
a modified ATUMtome63 (RMC/Boeckeler) onto 6 reels of grid tape45. 
The knife was cleaned every 100–500 sections, occasionally leading 
to the loss of a very thin partial section ()40#nm). Thermal expansion 
of the block as sectioning resumed post-cleaning resulted in a short 
series of sections substantially thicker than the nominal cutting thick-
ness. The sectioning took place in two sessions, the first session took 8 
consecutive days on a 24#h a day schedule and contained sections 1 to 
14773. The loss rate on this initial session was low, but before section 
7931 there were two events that led to consecutive section loss (due 
to these consecutive section losses we decided to not reconstruct the 
region containing sections 1 to 7931 even though the imagery was col-
lected). The first event that led to consecutive section loss was due 

to sections being collected onto apertures with damaged films. To 
prevent this from happening again, we installed a camera that moni-
tors the aperture before collection. The second event was due to an 
accident where the knife bumped the block and nicked a region near 
the edge of the ROI. At the end of this session we started seeing differ-
ential compression between the resin and the surface of the cortex. 
Because this could lead to severe section artefacts, we paused to trim 
additional empty resin from the block and also replaced the knife. The 
second session lasted five consecutive days and an additional 13,199 
sections were cut. Due to the interruption, block shape changes and 
knife replacement, there are approximately 45 partial sections at the 
start of this session; importantly, these do not represent tissue loss 
(see stitching and alignment section). As will be described later, the 
EM dataset is subdivided into two subvolumes due to sectioning and 
imaging events that resulted in loss of a series of sections.

TEM imaging
The parallel imaging pipeline described here63 converts a fleet of  
TEMs into high-throughput automated image systems capable of  
24/7 continuous operation. It is built upon a standard JEOL 1200EXII 
120#kV TEM that has been modified with customized hardware and 
software. The key hardware modifications include an extended col-
umn and a custom electron-sensitive scintillator. A single large-format 
CMOS camera outfitted with a low distortion lens is used to grab image 
frames at an average speed of 100#ms. The autoTEM is also equipped 
with a nano-positioning sample stage that offers fast, high-fidelity 
montaging of large tissue sections and an advanced reel-to-reel tape 
translation system that accurately locates each section using index 
barcodes for random access on the GridTape. In order for the autoTEM 
system to control the state of the microscope without human interven-
tion and ensure consistent data quality, we also developed customized 
software infrastructure piTEAM that provides a convenient GUI-based 
operating system for image acquisition, TEM image database, real-time 
image processing and quality control, and closed-loop feedback for 
error-detection and system protection etc. During imaging, the 
reel-to-reel GridStage moves the tape and locates targeting aperture 
through its barcode. The 2D montage is then acquired through raster 
scanning the ROI area of tissue. Images along with metadata files are 
transferred to the data storage server. We perform image quality control 
on all the data and reimage sections that fail the screening. Pixel sizes for 
all systems were calibrated within the range between 3.95 and 4.05#nm 
per pixel and the montages had a typical size of 1.2#mm#×#0.82#mm. The 
EM dataset contains raw tile images with two different sizes because two 
cameras with two different resolutions were used during acquisition. 
The most commonly used was a 20-megapixel camera that required 
5,000 individual tiles to capture the 1#mm2 montage of each section. 
During the dataset acquisition, three autoTEMs were upgraded with 
50-megapixel camera sensors, which increased the frame size and 
reduced the total number of tiles required per montage to ~2,600

Volume assembly
The images in the serial section are first corrected for lens distortion 
effects. A nonlinear transformation of higher order is computed for 
each section using a set of 10#×#10 highly overlapping images collected 
at regular intervals during imaging64. The lens distortion correction 
transformations should represent the dynamic distortion effects from 
the TEM lens system and hence require an acquisition of highly over-
lapping calibration montages at regular intervals. Overlapping image 
pairs are identified within each section and point correspondences 
are extracted for every pair using a feature based approach. In our 
stitching and alignment pipeline, we use SIFT (scale invariant feature 
transform) feature descriptors to identify and extract these point cor-
respondences. Per image transformation parameters are estimated 
by a regularized solver algorithm. The algorithm minimizes the sum 
of squared distances between the point correspondences between 
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these tile images. Deforming the tiles within a section based on these 
transformations results in a seamless registration of the section. A 
down-sampled version of these stitched sections are produced for 
estimating a per section transformation that roughly aligns these sec-
tions in 3D. A process similar to 2D stitching is followed here, where the 
point correspondences are computed between pairs of sections that 
are within a desired distance in z direction. The per section transforma-
tion is then applied to all the tile images within the section to obtain a 
rough aligned volume. MIPmaps are utilized throughout the stitching 
process for faster processing without compromise in stitching quality.

The rough aligned volume is rendered to disk for further fine align-
ment. The software tools used to stitch and align the dataset are avail-
able in our github repository (https://github.com/AllenInstitute/
asap-modules). The volume assembly process is entirely based on image 
metadata and transformations manipulations and is supported by the 
Render service (https://github.com/saalfeldlab/render).

Cracks larger than 30#µm in 34 sections were corrected by manu-
ally defining transforms. The smaller and more numerous cracks and 
folds in the dataset were automatically identified using convolutional 
networks trained on manually labelled samples using 64#×#64#×#40#nm3 
resolution image. The same was done to identify voxels which were 
considered tissue. The rough alignment was iteratively refined in a 
coarse-to-fine hierarchy77, using an approach based on a convolutional 
network to estimate displacements between a pair of images78. Dis-
placement fields were estimated between pairs of neighbouring sec-
tions, then combined to produce a final displacement field for each 
image to further transform the image stack. Alignment was first refined 
using 1,024#×#1,024#×#40#nm3 images, then 64#×#64#×#40#nm3 images.

The composite image of the partial sections was created using the 
tissue mask previously computed. Pixels in a partial section which were 
not included in the tissue mask were set to the value of the nearest pixel 
in a higher-indexed section that was considered tissue. This composite 
image was used for downstream processing, but not included with the 
released images.

Segmentation
Remaining misalignments were detected by cross-correlating patches 
of image in the same location between two sections, after transforming 
into the frequency domain and applying a high-pass filter. Combining 
with the tissue map previously computed, a mask was generated that 
sets the output of later processing steps to zero in locations with poor 
alignment. This is called the segmentation output mask.

Using the outlined method79, a convolutional network was trained to 
estimate inter-voxel affinities that represent the potential for neuronal 
boundaries between adjacent image voxels. A convolutional network 
was also trained to perform a semantic segmentation of the image  
for neurite classifications, including: (1) soma plus nucleus; (2) axon;  
(3) dendrite; (4) glia; and (5) blood vessel. Following the described  
methods80, both networks were applied to the entire dataset at 
8#×#8#×#40 nm3 in overlapping chunks to produce a consistent predic-
tion of the affinity and neurite classification maps. The segmentation 
output mask was applied to the predictions.

The affinity map was processed with a distributed watershed and 
clustering algorithm to produce an over-segmented image, where the 
watershed domains are agglomerated using single-linkage clustering 
with size thresholds81,82. The over-segmentation was then processed by 
a distributed mean affinity clustering algorithm81,82 to create the final 
segmentation. We augmented the standard mean affinity criterion with 
constraints based on segment sizes and neurite classification maps 
during the agglomeration process to prevent neuron-glia mergers as 
well as axon–dendrite and axon–soma mergers.

Synapse detection and assignment
A convolutional network was trained to predict whether a given 
voxel participated in a synaptic cleft. Inference on the entire dataset  

was processed using the methods described previously80 (using 8#×# 
8#×#40#nm3 images). These synaptic cleft predictions were segmented  
using connected components, and components smaller than 40 voxels 
were removed.

A separate network was trained to perform synaptic partner assign-
ment by predicting the voxels of the synaptic partners given the syn-
aptic cleft as an attentional signal83. This assignment network was run 
for each detected cleft, and coordinates of both the presynaptic and 
postsynaptic partner predictions were logged along with each cleft 
prediction.

To evaluate precision and recall, we manually identified synapses 
within 70 small subvolumes (n#=#8,611 synapses) spread throughout 
the dataset84.

Nucleus detection
A convolutional network was trained to predict whether a voxel par-
ticipated in a cell nucleus. Following the methods described previ-
ously80, a nucleus prediction map was produced on the entire dataset 
at 64#×#64#×#40#nm3. The nucleus prediction was thresholded at 0.5, 
and segmented using connected components.

Proofreading
Extensive manual, semi-automated, and fully automated proofreading 
of the segmentation data was performed by multiple teams to improve 
the accuracy of the neural circuit reconstruction.

Critical to enabling these coordinated proofreading activities is the 
central ChunkedGraph system1,85,86, which maintains a dynamic segmen-
tation dataset, and supports real-time collaborative proofreading on 
petascale datasets though scalable software interfaces to receive edit 
requests from various proofreading platforms and support querying 
and analysis on edit history.

Multiple proofreading platforms and interfaces were developed and 
leveraged to support the large-scale proofreading activities performed 
by various teams at Princeton University, the Allen Institute for Brain 
Science, Baylor College of Medicine, the Johns Hopkins University 
Applied Physics Laboratory, and ariadne.ai (individual proofreaders are 
listed in Acknowledgements). Below we outline the methods for these 
major proofreading activities focused on improving the completeness 
of neurons within and proximal to the main cortical column, splitting of 
merged multi-soma objects distributed throughout the image volume, 
and distributed application of automated proofreading edits to split 
erroneously merged neuron segments.

Manual proofreading of dendritic and axonal processes. Following 
the methods described previously26,85,87 proofreaders from Prince-
ton University, the Allen Institute for Brain Science, Baylor College 
of Medicine, and ariadne.ai used a modified version of Neuroglancer 
with annotation capabilities as a user interface to make manual split 
and merge edits to neurons with somata spatially located throughout 
the dataset. The choice of which neurons to proofread was based on 
the scientific needs of different projects, which are described in the 
accompanying studies4,5,7,10.

Proofreading was aided by on-demand highlighting of branch points 
and tips on user-defined regions of a neuron based on rapid skeletoni-
zation (https://github.com/AllenInstitute/Guidebook). This approach 
quickly directed proofreader attention to potential false merges and 
locations for extension, as well as allowed a clear record of regions of 
an arbor that had been evaluated.

For dendrites, we checked all branch points for correctness and all 
tips to see if they could be extended. False merges of simple axon frag-
ments onto dendrites were often not corrected in the raw data, since 
they could be computationally filtered for analysis after skeletonization 
(see next section). Detached spine heads were not comprehensively 
proofread. Dendrites that were proofread are identified in CAVE table 
proofreading_status_and_strategy as status_dendrite = “true”.



For axons, we began by ‘cleaning’ axons of false merges by looking 
at all branch points. We then performed an extension of axonal tips, 
the degree of this extension depended on the scientific goals of the 
different project. The different proofreading strategies were as follows:
(1)  Comprehensive extension: each axon end and branch point was 

visited and checked to see if it was possible to extend until either 
their biological completion or reached an incomplete end (incom-
plete ends were due to either the axon reaching the borders of the 
volume or an artefact that curtailed its continuation). Label: axon_ 
fully_extended.

(2)  Substantial extension: each axon branch point was visited and 
checked, many but not all ends were visited and many but not all 
ends were done. Label: axon_partially_extended.

(3)  Inter_areal_extension: a subset of axons that projected either from 
a HVA to V1, or from V1 to a HVA were preferentially extended to 
look specifically at inter-areal connections. Label: axon_interareal

(4)  Local cylinder cutting: a subset of pyramidal cells were proofread 
in a local cylinder which had a 300-µm radius centred around the 
column featured in Schneider-Mizell et al.4. For layer 2/3 cells the 
cylinder had a a floor at the layer 4/5 border, for layer 4 cells it had a 
floor at the layer 5/6 border. Any axon leaving the cylinder was cut and

(5)  At least 100 synapses: axons were extended until at least 100 syn-
apses were present on the axon to get a sampling of their output 
connectivity profile. Label: also axon_partially_extended.

Axons that were proofread are identified in CAVE table proofread-
ing_status_and_strategy as status_axon=‘true’ and the proofreading 
strategy label associated with each axon is described in the column 
‘strategy_axon’.

Manual proofreading to split incorrectly merged cells. Proofreading 
was also performed to correctively split multi-soma objects containing 
more than one neuronal soma, which had been incorrectly merged from 
the agglomeration step in the reconstruction process. This proofread-
ing was performed by the Johns Hopkins University Applied Physics 
Laboratory, Princeton University, the Allen Institute for Brain Science, 
and Baylor College of Medicine. These erroneously merged multi-soma 
objects were specifically targeted given their number, distribution 
throughout the volume, and subsequent impact on global neural con-
nectivity88 (Extended Data Fig. 3). As an example, multi-soma objects 
comprised up to 20% of the synaptic targets for 78 excitatory cells that 
with proofreading status ‘comprehensive extension’. Although the 
majority of multi-soma objects contained 2 to 25 nuclei (Extended Data 
Fig. 3a), one large multi-soma object contained 172 neuronal nuclei due 
to proximity to a major blood vessel present in a substantial portion 
of the image volume.

Different Neuroglancer web-based applications1,85,86,88 were used 
to perform this proofreading, but most edits were performed using 
NeuVue88. NeuVue enables scalable task management across dozens 
of concurrent users, as well as provide efficient queuing, review, and 
execution of proofreading edits by integrating with primary data man-
agement APIs such as CAVE and PCG. Multi-soma objects used to gen-
erate proofreading tasks were originally identified using the nucleus 
detection table available through CAVE. Additionally, algorithms were 
employed in a semi-automated workflow to detect the presence of 
incorrect merges and proposed potential corrective split locations in 
the segmentation for proofreaders to review and apply2.

Proofreading through automated error-detection and correction 
framework. Following methods described elsewhere2 automated 
error-detection and error-correction methods were utilized using 
the Neural De-composition (NEURD) framework to apply edits to 
split incorrectly merged axonal and dendritic segments distributed 
across the image volume. These automated methods leveraged graph 
filter and graph analysis algorithms to accurately identify errors in 

the reconstruction and generate corrective solutions. Validation and 
refinement of these methods were performed through manual review 
of proposed automated edits through the NeuVue platform88.

Co-registration
Transform. We initially manually matched 2,934 fiducials between 
the EM volume and the 2P structural dataset (1,994 somata and 942 
blood vessels, mostly branch points, which are available as part of the 
resource). Though the fiducials cover the total volume of the dataset 
it is worth noting that below 400#µm from the surface there is much 
lower signal to noise in the 2P structural dataset requiring more effort 
to identify somata, therefore we made use of more vascular fiducials. 
The fiducial annotation was done using a down-sampled EM dataset 
with pixel sizes 256#nm (x), 256#nm (y) and 940#nm (z).

Using the fiducials, a transform between the EM dataset and the 2P 
structural stack was calculated (Methods). To evaluate the error of 
the transform we evaluated the distance in micrometres between the 
location of a fiducial after co-registration and its original location; 
a perfect co-registration would have residuals of 0#µm. The average 
residual was 3.8#µm.

For calculating the transform we introduced a staged approach to 
separate the gross transformation between the EM volume and the 
2P space from the finer nonlinear deformations needed to get good 
residuals. This was done by taking advantage of the infrastructure 
created for the alignment of the EM dataset described above.

The full 3D transform is a list of eight transforms that fall into four 
groups with different purposes:
(1)  The first group is a single transform that is a second-order polyno-

mial transform between the two datasets. This first group serves 
to scale and rotate the optical dataset into EM space, followed by a 
single global nonlinear term, leaving an average residual of ~10#µm.

(2)  The second group of transforms addresses an issue we saw in the 
residuals: there were systematic trends in the residuals, both posi-
tive and negative, that aligned well with the EM z axis. These trends 
are spaced in a way that is indicative of changing shape of the EM 
data on approximately the length scale between knife cleanings or 
tape changes. We addressed this with a transform that binned the 
data into z ranges and applied a further second-order polynomial 
to each bin. We did this in a 2-step hierarchical fashion, first with 5 
z bins, followed by a second with 21 z bins. These steps removed the 
systematic trends in the residuals versus z and the average residuals 
dropped to 5.6#µm and 4.6#µm respectively.

(3)  The third group is a set of hierarchical thin plate spline transforms. 
We used successively finer grids of control points of even n#×#n#×#n 
spacing in the volume. We used 4 steps with n#=#[3, 5, 10, 12]. The idea 
here is to account for deformations on larger length scales first, 
so that the highest order transforms introduce smaller changes in 
position. The average residuals in these steps were 3.9, 3.5, 3.1 and 
2.9#µm accomplished with average control point motions of 12.5, 
7.5, 3.8 and 1.6#µm.

(4)  The final group is a single thin plate spline transform. The control 
points for this transform are no longer an evenly spaced grid. In-
stead, each fiducial point is assigned to be a control point. This 
transform minimizes the residuals almost perfectly (as it should 
for the control points which are identical to the fiducials; 0.003#µm 
on average; Fig. 3) and accomplishes this final step by moving each 
data point on average another 2.9#µm. This last transform is very 
sensitive to error in fiducial location but provides the co-registration 
with minimal residuals. This last transform is also more likely to 
create errors in regions with strong distortions, as for example the 
edges of the dataset.

Since the nature of transform 4 is to effectively set the residuals to 
zero for the control points, we used a new measure to evaluate the error 
of the transform. We created 2,933 3D transforms, each time leaving 
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out one fiducial and then evaluated the residual of the left-out point. 
We call this measure ‘leave-one-out’ residuals and it evaluates how well 
the transform does with a new point.

Assigning manual matches. A custom user interface was used to visu-
alize images from both the functional data and EM data side-by-side to 
manually associate functional ROIs to their matching EM cell counter-
part and vice versa. To visualize the functional scans, summary images 
were generated by averaging the scan over time (average image) and 
correlating pixels with neighbour pixels over time (correlation image). 
The product of the average and correlation images were used to clearly 
visualize cell body locations. Using the per field affine registration into 
the 2P structural stack (Fig. 3b), a representative image of labelled vas-
culature corresponding to the registered field was extracted from the 
red channel of the stack. EM imagery and EM nucleus segmentation was 
resized to 1#µm3 resolution, and transformed into the 2P structural stack 
coordinates using the co-registration transform, allowing an EM image 
corresponding to the registered field to be extracted. The overlay of the 
extracted vessel field and extracted EM image were used to confirm lo-
cal alignment of the vasculature visible in both domains. Soma identity 
was assessed by comparing the spatial structure of the target soma and 
nearby somas in the functional image to soma locations from the EM 
cell nuclei image. Using the tool, matchers generated a hypothesis for 
which EM cell nucleus matched to a given functional unit or vice versa. A 
custom version of Neuroglancer (Seung laboratory; https://github.com/
seung-lab/neuroglancer) was used to visualize the region of interest in 
the ground truth EM data for match confirmation. The breakdown in 
the number of unique neuron matches per 2P scan is shown in Extended 
Data Fig. 4a. The resulting matches are uploaded to CAVE table coregis-
tration_manual_v4. The latest recommended manual match table can 
be found at https://www.microns-explorer.org/cortical-mm3#f-coreg.

Evaluating manual matches. In addition to the matches, the manual 
co-registration table includes two metrics that help assess confidence. 
The first, residual, measures the distance between the matched 2P func-
tional unit centroid and EM neuron soma centroid, after transformation 
with the EM to 2P fiducial-based transform (Extended Data Fig. 4b, 
top). The second metric, separation score, measures the difference in 
residuals between the match and the nearest non-matched EM neuron. 
(Extended Data Fig. 4b, bottom) Negative separation indicates that the 
nearest EM neuron to the functional unit after transformation was not 
chosen by the matchers. Smaller residuals and larger separation scores 
indicate higher confidence matches, as is the case for a majority of 
matches (Extended Data Fig. 4c). To help validate the manual matches, 
for every EM neuron that was independently matched to at least two 
scans, the in vivo signal correlation (correlation between trial-averaged 
responses to oracle stimuli) was computed between the matched unit 
in scan A to the matched unit in scan B. In addition, for each neuron, two 
control correlations were computed, the matched unit in scan A to the 
nearest unit not matched to the neuron in scan B, and vice versa (Extend-
ed Data Fig. 4d). As expected, the distribution of oracle scores between 
the matched neurons and control neurons are qualitatively similar, with 
a slight right-shift towards higher oracle scores for matches, as higher 
oracle scores were prioritized for matching (Extended Data Fig. 4e). 
The comparison of signal correlation between matched neurons and 
their control counterparts exhibits a strong trend, with a clustering 
in the upper left quadrant and most data points positioned above the 
diagonal. This indicates that the matched neurons consistently have 
stronger signal correlations compared to their nearest counterparts, 
and high signal correlation overall, especially when the oracle score is 
larger (Extended Data Fig. 4f). Filtering by oracle score further refines 
the trend, highlighting that high oracle score neurons (score#>0.2) show 
even more distinct separation, with matched neurons maintaining 
superior signal correlation values compared to the nearest-neighbour 
matches (Extended Data Fig. 4g,h).

Generating the fiducial-based automatch. To generate the fiducial- 
based automatch, we utilized the EM-to-2P co-registration transform 
to map all EM neuron nucleus centroids (retrieved from the CAVE  
table nucleus_neuron_svm) into the 2P functional space. Next, we app-
lied the minimum weight matching algorithm for bipartite graphs89 
using the linear_sum_assignment function from the scipy.optimize 
module90 to perform the matching. The resulting automatch table 
is stored in the CAVE table coregistration_auto_phase3_fwd, which 
also includes the associated residual and separation scores. The latest 
recommended fiducial-based automatch table can be found at https://
www.microns-explorer.org/cortical-mm3#f-coreg.

Vessel-based co-registration and automatch. To achieve 
co-registration starting with the 2P structural stacks and EM segmenta-
tion and without the use of fiducials, we employed a multi-scale B-spline 
registration91 using only vasculature data. This non-rigid transforma-
tion method corrects the extreme nonlinear tissue distortions caused 
by shrinkage from 2P to EM. Both the EM segmentation and the 2P 
structural stack volumes were subsampled to match 1-µm voxel resolu-
tion, ensuring consistent scaling and indexing between the volumes.

Pre-processing on the vessels was necessary to address inconsistent 
signal quality in the 2P data, especially for vessels located deeper in the 
cortex, which emit lower fluorescence. A Meijering neurite filter92 was 
applied to the vessels, using the eigenvectors of the Hessian matrix to 
detect vessels effectively.

An additional filtering step mitigated discrepancies in z resolution 
and errors from false splits in the EM segmentation. To address the z 
direction smearing in 2P due to anisotropy, both the 2P and EM volumes 
were binarized, skeletonized and further processed by removing small 
isolated segments. A Gaussian filter was convolved over the skeletons, 
forming tubes of constant radius for co-registration. Another round of 
skeletonization and Gaussian filtering was applied to correct for false 
splits in thicker vessels.

The final co-registration was computed using SimpleITK’s B-spline 
algorithm93, treating the EM volume as the ‘moving’ volume. Initially, 
centroid alignment was achieved via template matching within a small 
subvolume. Despite tissue shrinkage, the volumes were locally aligned 
well enough to yield good correlations. The B-spline transformation 
was performed across multiple scales, progressing from coarse grids 
with strong smoothing to finer grids with minimal smoothing. The 
Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) opti-
mizer with 600 iterations was used, sampling 1% of the points to handle 
large matrices. The resulting flow field and its inverse defined how each 
voxel mapped between spaces.

For the final step, the flow field was applied to both the EM nuclear 
segmentation and the 2P unit centroids. Minimum weight matching was 
performed (as described in ‘Generating the fiducial-based automatch’) 
to establish match assignments, using excitatory neuron centroids 
from the CAVE table aibs_metamodel_mtypes_v661_v2. The final table 
is uploaded to apl_functional_coreg_vess_fwd with the associated 
residual and separation scores. The latest recommended vessel-based 
automatch table can be found at https://www.microns-explorer.org/
cortical-mm3#f-coreg.

Generating the fiducial-vessel agreement automatch table. To 
generate the fiducial-vessel agreement automatch table, first, for each 
table described above (coregistration_auto_phase3_fwd, apl_func-
tional_coreg_vess_fwd), the residual and separation scores were trans-
formed into percentiles. Then, the two tables were merged on keys: 
‘session’, ‘scan_idx’, ‘field’, ‘unit_id’ and ‘target_id’.

Evaluating automatch tables. To evaluate the automatch tables, we 
computed precision and recall using manual matches as ground truth. 
To ensure a fair comparison, we first restricted both the automatch and 
manual match tables to only contain rows where the functional unit or 



EM neuron was commonly attempted. For calculating precision and 
recall, true positives were rows common to both tables, false positives 
were rows only in the automatch table, and false negatives were rows 
only in the manual match table. The precision-recall curves can be 
used to select an automatch, and/ or a metric with which to threshold 
matches (Extended Data Fig. 5a). In addition, heat maps are provided 
indicating precision levels (Extended Data Fig. 5b) and number of 
automatches remaining (Extended Data Fig. 5c) for jointly applied 
residual and separation percentile thresholds. To apply a threshold, 
first convert the residual and separation (named ‘score’ in the table) 
to percentiles. Then for residual, apply the threshold as a maximum, 
taking the matches below the threshold. Conversely, for separation, 
apply the threshold as a minimum.

Cell classification
We analysed the nucleus segmentations for features such as volume, 
surface area, fraction of membrane within folds and depth in cortex. 
We trained a support vector machine (SVM) machine classifier to use 
these features to detect which nucleus detections were likely neurons 
within the volume, with 96.9% precision and 99.6% recall. This model 
was trained based upon data from an independent dataset, and the 
performance numbers are based upon evaluating the concordance 
of the model with the manual cell-type calls within the volume. This 
model predicted 82,247 neurons detected within the larger subvolume. 
For the neurons, we extracted additional features from the somatic 
region of the cell, including its volume, surface area, and density of 
synapses. Dimensionality reduction on this feature space revealed 
a clear separation between neurons with well-segmented somatic 
regions (n#=#69,957) from those with fragmented segmentations or 
sizable merges with other objects (n#=#12,290). Combining those fea-
tures with the nucleus features, we trained a multi-layer perceptron 
classifier to distinguish excitatory from inhibitory neurons among the 
well-segmented subset, using the 80% of the manual labelled data as a 
training set, and 20% as a validation set to choose hyper-parameters. 
After running the classifier across the entire dataset, we then tested 
the performance by sampling an additional 350 cells (250 excitatory 
and 100 inhibitory). We estimate from this test that the classifier had 
an overall accuracy of 97% with an estimated 96% precision and 94% 
recall for inhibitory calls.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
EM imagery, segmentation and annotation data is available via https://
www.micronsexplorer.org/cortical-mm3 and from https://bossdb.org/
project/microns-minnie.

Code availability
Code for analysis and generation of figures was generated in Python 
Jupiter notebooks and is available at https://github.com/AllenInstitute/
MicronsFunctionalConnectomics, making extensive use of CAVE analy-
sis infrastructure1 (available at https://github.com/CAVEconnectome) 
and CloudVolume94 to interact with data infrastructure, and libraries 
Matplotlib95, Numpy96 and Pandas for general computation and data 
visualization.
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