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ABSTRACT
Images obtained from serial section electron microscopy

can contain defects that create discontinuous tissue defor-
mation. Fixing such defects during image registration is
especially challenging, as classical block matching registra-
tion techniques assume smooth motion within each block,
and ConvNet based registration techniques must rely on
smoothness assumption during training.

We propose Caesar, a divide-and-conquer technique that
breaks registered images into segments, such that most of
discontinuity is confined to segment boundaries. Then, we
align the segments independently and stitch the results back
together. We provide extensive experimental evaluation on
brain tissue serial section microscopy data that shows that
segment-wise alignment reduces the average misalignment
area around defects by 6-10x.

1. INTRODUCTION

In serial section electron microscopy (ssEM), a brain vol-
ume is cut into a series of ultrathin sections, each of which
is imaged via electron microscopy. Then the 2D images are
aligned to create a 3D image stack, from which the connec-
tions between neurons can be reconstructed.1 A caveat is that
image alignment can be surprisingly challenging for several
reasons. First, ssEM images have become very large and un-
wieldy. Second, the deformations of the images are nonaffine,
due to physical deformations of the sections as well as distor-
tions introduced by imaging. Third, highly accurate align-
ment is required for automated segmentation of neurons. A
thin axon can be less than 100 nm in diameter, and a mis-
alignment greater than 100 nm can cause the axon to become
discontinuous within the image stack, which typically leads
to an error in the automated segmentation.

The difficulty of aligning serial section images motivated
the development of block face electron microscopy (bfEM)[3,
4, 5]. In this approach, ultrathin sections are sequentially re-
moved from the block. Each time a fresh block face is ex-
posed, and is imaged by scanning EM. Because the block de-

1ssEM is also applied to other biological tissues, but we are particularly
interested in the application to reconstructing neuronal connections in brain
tissue. Serial sectioning is also used with light microscopy [1, 2] as well as
EM, and our work may be relevant in this context also.

forms so little, bfEM yields a series of 2D images that require
relatively little processing to align into a 3D stack. While
bfEM has many strong points, ssEM has remained popular
[6], aided by rapid improvements in the state of the art in
image alignment. There are a number of software packages
for ssEM image alignment, including TrakEM2 [7], AlignTK
[8], NCR Tools [9], FijiBento [10], and EM aligner [11]. The
packages are typically based on some method of identifying
correspondences between pairs of image points, as well as
some method of combining these correspondences to produce
a global alignment. The packages are capable of aligning
smoothly deformed images, but fail with discontinuous de-
formations.

Even when cut by an expert, ultrathin sections contain oc-
casional cracks and folds (Fig. 1). In the worst case, a series
may contain numerous cracks and folds in virtually every sec-
tion, in which case the series is typically discarded as useless.
On either side of a crack, the section deforms away from the
crack. On either side of a fold, the section deforms toward the
fold. These deformations lead to misalignment. If one applies
the above-mentioned software packages, the misalignment is
eliminated far away from the crack or fold. However, a mis-
aligned region surrounding the crack or fold still remains, and
this region can be quite wide (Fig. 2).2 If such misalignments
could be corrected, ssEM datasets with many cracks and folds
would become more useful for science.

The problem is that the deformation is discontinuous at
a crack or fold, and the existing alignment methods assume
that the deformation is smooth. Recently proposed ConvNet-
based alignment methods[12] can potentially correct wider
range of deformation types. ConvNet-based alignment meth-
ods, as inspired by recent work in optical flow prediction[13,
14], rely on brightness constancy and motion smoothness as-
sumptions during training. The smoothness assumption pe-
nalizes the network for predicting non-smooth displacement
fields, which is necessary for successful self-supervised train-
ing, but is not appropriate for cracks and folds.

In this work, we propose segmenting the image at the
cracks and folds, aligning the segments independently, and
then stitching the results back together. We call the proposed
method Caesar. Because motion of each side of the defect is

2Some image data is also ”devoured” at a fold. Our goal is not to recover
such missing data, but to correct the misalignment surrounding a fold.
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Fig. 1: Crack and Fold Mechanics
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Fig. 2: Illustration of a fold causing a large area of misalignment. Images show pixel-
wise difference between the source and the target image, with brighter pixels represent-
ing large difference, darker values representing and black values representing the fold
itself. Uniformly gray areas far away from fold are well aligned, and high contrast areal
around the fold are aligned poorly.

continuous, aligning one side at a time does not require the
aligner to predict discontinuous motion, which simplifies the
alignment task. We show that a ConvNet can be trained to
successfully predict discontinuity locations in images. Based
on discontinuity locations predicted by the ConvNet we break
the image into segments such that most of the discontinuity
is confined to segment boundaries. The chosen alignment
method can then be applied to each segment independently.
This is similar to the approach commonly taken in semantic
segmentation, where an image is first divided into segments
delineating object boundaries, and then each segment is clas-
sified independently in order to identify the object within the
segment. We provide empirical evaluation of segment-wise
alignment method on a brain EM serial section data set with a
large number folds. Although our empirical evaluation mostly
focuses on folds, not cracks, the proposed technique can be
applied to cracks without loss of generality. We show that
Caesar can reduce the average width of misalignment areas
by 6-10x.

2. METHODS

2.1. Detection

Folds have distinctive shape and color in the EM image as
they are expressed as dark lines. Therefore, it is possible to
train a ConvNet to detect the folds automatically. Fold de-
tector (FoldNet) architecture is a simplified version of U-Net
[15]. The architecture consists of 9 levels, with 3 convolu-
tions each. The fold detector takes EM image as an input and
outputs likelihood of fold for each pixel.

Ground truth data consists of 2400 EM images of 1024
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Width

(b) Pad 3% Image
Width
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Width

Fig. 3: Segmentation Examples for different padding thresholds. Larger padding values
lead to bigger segments. Best seen in color. Fold masks are gathered from EM images,
1024 x 1024 in resolution of 1024 x 1024 nm2.

x 1024 pixels each downsampled to 16 nm pixel resolution.
1600 of the samples were used for training, 400 of the samples
were used for validation, and 400 of the samples were used
for the test set. Binary cross entropy was used as the loss
function in the training. Flip and rotation augmentation were
introduced to represent diverse inputs.

2.2. Segmentation

After identifying the defect locations with a ConvNet, we
divide the image into segments. The goal is to produce a
segmentation such that no segment will cross across a de-
fect boundary. The tissue within each segment is going to
be aligned independently, with padding. Padding is necessary
to produce consistent alignment across segment boundaries.

2.3. Acknowledgements

After identifying the defect locations with a ConvNet, we
divide the image into segments. The goal is to produce a
segmentation such that no segment will cross across a de-
fect boundary. The tissue within each segment is going to
be aligned independently, with padding. Padding is necessary
to produce consistent alignment across segment boundaries.

Because existing alignment methods expect a rectangu-
lar image as input, aligning each segment is computationally
equivalent to aligning the bounding box of the segment. If
two segments have overlapping bounding boxes, the amount
of overlap is going to correspond to the amount of repeated
computation. Good defect segmentation would minimize the
computation overhead by generating segments with minimal
total amount of bounding box overlap. Total overhead can be
computed as the sum of areas of segment bounding boxes di-
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Fig. 4: Segmentation algorithm walk-through

vided by the total area of the image, which we will refer to as
overlap factor.

Segment padding plays an important role in defect seg-
mentation. Without padding, an optimal, trivial solution
would be to treat each pixel as an independent segment. The
area of the bounding box for each pixel would be equivalent
to the area of the pixel itself, leading to overlap factor of
1. The padding requirement encourages constructing larger
segments and makes trivial solutions prohibitive.

We propose segmenting the image by breaking the image
into a large number of small segments (over-segmentation),
and then repeatedly merge those segments into larger ones
(agglomeration). We generate the over-segmentation by
chunking the image with a uniform grid and and identify-
ing connected components within each chunk (Fig. 4 (b)).
We will refer to these initial segments as atoms. In order
for the agglomeration stage not to merge atoms across de-
fect boundaries, we mark pairs of atoms which are directly
separated by a defect as mutually conflicting (Fig. 4 (c)).
During agglomeration, two segments can only be merged if
none of their atoms are mutually conflicting. Agglomeration
stage greedily merges the smallest segment with a neighbor
that leads to biggest reduction of the overlap factor. Note that
the final agglomeration result is dependent on the padding
amount, as larger padding encourages larger segments (Fig.
3).

This segmentation algorithm complexity is O(W ∗ H),
where W and H are width and height of the image.

3. EXPERIMENTS

3.1. Fold Detection

Fig. 5 shows example outputs of FoldNet (b). As it is de-
scribed in the example outputs, baseline fold detector is de-
cent for the folds that are distinctive but it’s vulnerable to
dimmer folds unlike FoldNet. To evaluate the performance,
we dilated the masks first in order to remove the noise in the
ground truth. Then we calculated pixel-wise precision-recall,
Jaccard index, and Dice index to evaluate the performance.
As shown in Fig. 5(c), our FoldNet outperforms the baseline
detector with optimum F1 score of 0.861 (1). The difference
is more dominant in Jaccard index and Dice index. Table

Table 1: Fold detection evaluation.

Method F1 Jac (± std) Dice (± std)

Baseline 0.71 0.32± 0.36 0.36± 0.39
FoldNet* 0.86 0.82± 0.23 0.87± 0.22

FoldNet* is the network with optimum threshold in Fig. 5.

1 shows, average Jaccard index and Dice index of FoldNet
are 0.825 and 0.873 respectively while baseline detector’s are
0.329 and 0.386. This is because baseline detector confuses
many dark pixels as fold while FoldNet is more robust to this
so FoldNet is able to detect folds more exclusively.

3.2. Alignment

We evaluate the effectiveness of segment-wise alignment on
coarse alignment of brain tissue EM images. The goal of
coarse alignment is to correct the largest displacements in the
stack, which is why it is usually done on a heavily downsam-
pled images. In this case, our coarse alignment methods were
applied to images downsampled to 1024 x 1024 nm2 pixel
resolution.

We evaluate the method paired with both ConvNet based
and block matching based methods. The ConvNet was trained
on cutouts from 2000 images 2048 x 2048 px images. Train-
ing images contained a large amount of folds, averaging over
24 folds per image. For block matching, tile size and step size
parameters were set to the values that produced best MSE be-
tween aligned images in the evaluation stack. The evaluation
was performed on 600 images, 2048 x 2048 px, averaging 7
folds per image.

We use 2 evaluation metrics – the average width of mis-
alignment area around folds and percentage of folds that
could not be resolved perfectly. We find the width of mis-
alignment area by moving focusing on 10 px stripe of tissue
around the fold and moving the stripe away until the average
pixel error within the stripe is less than or equal to the av-
erage pixel error in the whole image. If the stripe does not
need to be moved backward, we judge the fold to be resolved
perfectly.

When paired with ConvNet ailment, Caesar decreases the
number of unresolved defects by 4.5x, while reducing the av-
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Fig. 5: (a) Ground truth target fold mask. (b) FoldNet output fold mask. (c) Precision-recall curve of FoldNet and Baseline.
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Fig. 6: Dependence between segment padding and overlap ratio.

erage misalignment width of the remaining defects by 6.1x,
and (Table 2). When paired with block matching, Caesar de-
creases decreases the number of unresolved defects by 3.6x,
the average misalignment width of remaining misalignments
by 10.9x. Overall, we find that ConvNet alignment performs
better around folds than block matching, both with and with-
out Caesar. This is consistent with our expectations, since
ConvNet is more suited for solving discontinuous defects. Al-
though no discontinuous defects need to be solved within a
segment with Caesar, block matching still often fails to accu-
rately align thin segments of stretched tissue. The best ob-
tained average misalignment width of remaining defects is
104nm, which corresponds to 10 pixels at 1024 x 1024 pixel
resolution.

3.3. Segmentation

Figure 6 presents the average overlap ratio achieved by the
segmentation procedure as a function of the padding amount.
The data is obtained from running segmentation on 800 EM
1024 x 1024 px images. Overlap ratio represents the com-
putational overhead introduced by segment-wise alignment
method. The padding ranged from 5 px to 25 px at 1024 x
1024 nm resolution. Figure 6 shows that overlap ratio grows
linearly with padding, ranging from 1.2x to 3.3x.

Table 2: Alignment Quality Comparison

Method
Unresolved

Defects
Misalign

Width (nm)

ConvAlign 23.9% 6.1 ∗ 104
ConvAlign + Caesar 4.6% 1.0 ∗ 104

Improvement 4.5x 6.1x

BlockMatch 72.9% 2.3 ∗ 105
BlockMatch + Caesar 20.3% 2.1 ∗ 104

Improvement 3.6x 10.9x

4. CONCLUSION

In this work, we present a section-wise method of aligning
ssEM images in presence of discontinuous defects. We detect
defect locations with a ConvNet, segment the image so that
no segment contains tissue on both sides of a single fold, and
then align each of the segments independently. Because the
segments do not contain discontinuous defects, aligning them
is easier both with block matching and with ConvNet meth-
ods. We empirically show that segment-wise alignment sig-
nificantly decreases the misalignment areas around defects.
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