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SUMMARY
We assembled a semi-automated reconstruction of L2/3 mouse primary visual cortex from �250 3 140 3
90 mm3 of electron microscopic images, including pyramidal and non-pyramidal neurons, astrocytes, micro-
glia, oligodendrocytes and precursors, pericytes, vasculature, nuclei, mitochondria, and synapses. Visual re-
sponses of a subset of pyramidal cells are included. The data are publicly available, along with tools for pro-
grammatic and three-dimensional interactive access. Brief vignettes illustrate the breadth of potential
applications relating structure to function in cortical circuits and neuronal cell biology. Mitochondria and syn-
apse organization are characterized as a function of path length from the soma. Pyramidal connectivity motif
frequencies are predicted accurately using a configuration model of random graphs. Pyramidal cells
receiving more connections from nearby cells exhibit stronger and more reliable visual responses. Sample
code shows data access and analysis.
INTRODUCTION

Reconstructions of brain tissue from electron microscopy (EM)

images of invertebrate and vertebrate species have increased

in scale and complexity, aided by automation of image acqui-

sition (Kornfeld and Denk, 2018) and analysis (Lee et al., 2019).

In vivo calcium imaging has preceded EM reconstruction in a

few studies (Briggman et al., 2011; Vishwanathan et al.,
1082 Cell 185, 1082–1100, March 17, 2022 ª 2022 Elsevier Inc.
2017; Bae et al., 2018; Wanner and Friedrich, 2020). This com-

bined structure-function approach has been applied to mouse

primary visual (V1) cortex (Bock et al., 2011; Lee et al., 2016),

but was previously limited to tens of cells. Here, we present a

reconstruction of mouse V1 including neuronal and non-

neuronal cells, mitochondria, cell nuclei, synapses, and cal-

cium imaging from over 100 of the pyramidal cells (PyCs).

The data are publicly available (microns-explorer.org), along
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Figure 1. Neuronal and non-neuronal cells

(A) Rendering of a PyC (red) and basket interneuron (blue) after proofreading. Insets: zoomed-in 2D EM and 3D mesh views for 3 of 5 PyC-to-basket synapses.

Left insets: cells with somas in the dataset, by type, with cutouts to show examples. Top to bottom: PyCs, interneurons, non-astrocytic glia (minus 4 cells with

merge errors that obscure the view: STAR Methods).

(legend continued on next page)
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with tools for programmatic and interactive access. We

also provide four vignettes exploring mitochondria, synapses,

circuit motifs, and the relationship of connectivity to

function, chosen to demonstrate the diversity of quantitative

information that can be uncovered with this multifaceted

reconstruction.

RESULTS

Reconstruction of mouse visual cortex
We selected a region in L2/3 of V1 from a male, young adult

(postnatal day 36) mouse in which neural activity had been re-

corded using calcium imaging (Figures 1A and S1; STAR

Methods). Using serial-section EM, we imaged a volume of

about 2503 1403 90 mm3 (mediolateral, radial, and anteropos-

terior axes). Data S1 compares this volume with other published

rodent EM volumes. A nominal resolution of 3.58 3 3.58 3

40 nm3/voxel is used throughout (see STAR Methods for in vivo

resolution estimates and precise volume dimensions). This reso-

lution is sufficient to visualize and analyze the morphology of

cells, their organelles, and chemical synapses in neurons (insets

of Figures 1A–1F and S1A–S1C). Alignment and automatic seg-

mentation of the serial-section images yielded roughly 8 million

objects describing neurons, non-neuronal cells, and cellular

fragments (Figure 1G).

Cells with somas were assigned types using a semi-auto-

mated approach based on neurite morphology (Figures 1H, 3A,

and 3B; STAR Methods). In addition to 416 PyCs, we identified

12 bipolar cells, 4 basket cells, 2 chandelier cells, 1 Martinotti

cell, and 1 neurogliaform cell (Figures 5A and S1). There were

14 cells with axons that were severely cut off by the borders of

the volume, which we could not confidently classify aside from

distinguishing them from the excitatory PyCs (Figure 3A;

Data S2).

We adjusted automated cellular reconstructions to facilitate

accurate morphological and connectivity analyses. All nuclei

were automatically segmented (STAR Methods) to aid the iden-

tification of all somas in the volume. For the 363 of 416 PyCs that

had somas and sufficient neurites in the volume, and for the 34

inhibitory cells (Figure 1H), we corrected segmentation errors us-

ing an interactive proofreading system for human experts to split

and merge objects (Dorkenwald et al., 2019, 2020) that covered

�27%of the volume and took roughly 1,330 person hours (STAR

Methods).
(B) Microglia, without proofreading. Inset: EM view of the soma, showing dark, s

(C) Astrocyte, without proofreading, showing endfeet (box, inset, white arrow) and

cytoplasm.

(D) Oligodendrocyte precursor cell (OPC). Inset: EM of OPC occupying the smal

OPC cytoplasm.

(E) Oligodendrocyte. Wrapped axons shown in gray. Inset: EM of a process tran

(F) Endothelial cell wrapping a blood vessel, with split errors corrected (merge er

cytoplasm and nucleoplasm (STAR Methods). Asterisk: nucleus.

(G) Sample orphan neurites with R10 predicted synapses.

(H) Soma centroids in the EM volume. Dark red: PyCs analyzed in this paper (363)

neurons (34); dark gray: glia (169).

Scale bars: 20 mm in (A), 1 mm (3D synapse insets), 300 nm (EM insets); 10 mm in

See also Figure S1.
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We automatically computed skeletons and meshes for each

object in the cellular andmitochondrial segmentations to provide

useful representations for visualization and analysis (e.g., for

measurements involving length or surface area). In addition, we

used a semi-automated approach (STAR Methods) to assign

compartment labels to the skeleton nodes of the neurons we

proofread. These labels included somatic, axonal, and dendritic

for inhibitory cells, as well as apical dendritic and basal dendritic

for PyCs. Of the 363 PyCs, 351 possess compartment labels

without discernible errors, although the others are still useful

for specific analyses.

The 351 PyCs were captured in the volume at varying degrees

of completion (Figures 3D–3G). Many PyC axons were truncated

at lengths <100 mm from the soma (Figures 3E, S4B, and S7C),

but 111 had axons extending beyond 100 mm (roughly the first

branch point). PyC dendrites (both apical and basal) were

captured at lengths ranging from �0 to >200 mm (captured to

natural distal endpoint) (Figure 3D). By computing the total

path length of the dendritic arbor for each PyC and comparing

this measurement with light microscopy data with full arbors (Gil-

man et al., 2017), we estimated that PyC dendritic arbors were

between �0% and 69% complete (median �34%), with total

path lengths of up to 2.98 mm (Figures 3F and 3G). Apical den-

drites for PyCs were more cut off than basal dendrites in our vol-

ume, as these dendrites largely ramify in L1 (outside the volume).

Non-neuronal cells included 71 endothelial (blood-vessel

wrapping) cells, 44 astrocytes, 31 microglia, 15 oligodendrocyte

precursor cells (OPCs), 2 oligodendrocytes, and 1 pericyte (Fig-

ure 1A bottom left inset, 1B–1F, 3B). Blood vessels totaled

2.03 mm in length (Figure S1F).

Automatic synapse detection yielded over 3.5 million synap-

ses with 93.0% precision (the percentage of correct predictions)

and 90.9% recall (the percentage of synapses captured by the

predictions) (STAR Methods). Axo-dendritic, axo-axonic, and

axo-somatic synapses were all present (Figures 1A insets and

S1A–S1C), and detection performance for these synapse types

varied (Figure 3C). Synapses onto PyCs with somas were proof-

read. This yielded a highly accuratemap of connectivity between

PyCs with somas in the EM volume, consisting of 1,981 synap-

ses within 1,752 PyC-PyC connections that can be used to

analyze properties of cortical circuits (Figure 6; Dorkenwald

et al., 2019).

The reconstruction includes over 2.4millionmitochondria (Fig-

ures 4A and 4B; STAR Methods; see Dorkenwald et al., 2017;
carce cytoplasm and dark nucleoplasm.

merge errors with axon segments (black arrowheads). Asterisks: 3D, soma, 2D,

l space between neurites. Non-OPC neuropil is artificially dimmed to highlight

sitioning to myelin.

rors artificially removed for clarity; Figure S1). Inset: EM of soma showing dark

; light pink: PyCs at edge of volume, not analyzed (53); blue: analyzed inhibitory

(B–E), 750 nm (insets); 20 mm in (F), 100 nm (inset); 25 mm in (G and H).
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Figure 2. Resource access

(A) Cell segmentation displayed using Neuroglancer (Maitin-Shepard, 2019), including tabs for multiple data layers (top) and the UI scale bar (bottom left). Clicking

on the red segment under the white arrow selects the cell in (B–E). Zooming to view the dashed black box shows (F).

(B) Triangle mesh for the cell selected in (A). The UI can show the full extent of this cell’s reconstruction within the segmentation bounding box. Zooming to view

the dashed black box shows (C).

(C) EM image data rendered along with the mesh from (B). Changing the view layout shows (D).

(D) Mitochondria and synapse layers added to the EM slice from (C). The image has been dimmed using the UI to highlight synapse segments, and all synapse

segments were given the same color. Zooming to view the dashed white box shows the view in (E).

(E) A single synapse in detail. (Left) raw EM. (Right) synapse, mitochondria, and cell segmentation layer added (with red cell selected).

(F) Nucleus segmentation added at full opacity. Cell segmentation shown at decreased opacity.

(G) Types of data available in the resource. LM = light microscopy, vx = voxels. Nominal voxel size is 7.16 3 7.16 3 40 nm3 for synapse and mitochondria

segmentations, 57.28 3 57.28 3 40 nm3 for nucleus segmentation.

Scale bars: 1 mm in (D), 150 nm in (E), 3 mm in (F).

See also Video S1.
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Haberl et al., 2018; Xiao et al., 2018 for similar methods and

Perez et al., 2014; Márquez Neila et al., 2016; Calı̀ et al., 2019;

Yuan et al., 2020 for others). Each reconstructed mitochondrion

is linked with its host cell’s identifier so they can be analyzed on a

per-cell basis. These mitochondria have various morphologies,

including a ‘‘reticular’’ type (Figure S2N; see Popov et al.,

2005) that extend for longer distances (>100 mm) than previously

observed. These reside in orphan dendrites, presumably from

deep L2/3, L5, or L6 PyCs.

Prior to EM imaging, responses of PyCs to visual stimuli were

recorded in an overlapping volume by calcium imaging (Figures

7A–7C, S7A, and S7B; STAR Methods). A colored noise stimulus

was presented to characterize spatiotemporal receptive fields

(Figure 7B), and oriented stimuli moving in any of 16 directions

(Figure 7B) were presented to characterize direction and orienta-

tion selectivity (Figures 3H–3J). Each direction was shown once

for each of the 30 trials. Each trial presented the directions in a

pseudo-random order, interspersed with the colored noise stim-

ulus (each row of Figure 7B shows part of an individual trial; see

STAR Methods). The calcium videos were co-registered to the

EM volume (Figures 7A, S7A, and S7B) and normalized (STAR
Methods). Activity traces were extracted for 112 of the 363

PyCs (Figure 7C) via the EASEalgorithm (Zhouet al., 2020). Traces

and estimated spike rates were acquired for only a subset of re-

constructed PyCs that both overlapped with the calcium imaging

volume and were responsive to visual stimuli (STAR Methods).

All our EM data, reconstructed cells, synapses, mitochondria,

and visual responses are publicly available at the MICrONS

Explorer website, microns-explorer.org (Figure 2; Video S1).

Below, we provide four vignettes that address diverse ques-

tions about the cortex on organelles, synapses, circuit structure,

and function, chosen to illustrate the breadth of science enabled

by our resource. Associated Jupyter notebooks are on the

MICrONS Explorer website.

Spatial organization of mitochondria
The compartments of a neuron—axon, dendrites, and soma—

have different functions supported by distinct structures, and

their intracellular organelles have distinctive properties. Axonal

mitochondria are small and punctate, whereas dendritic mito-

chondria are often much longer (Chang et al., 2006; Lewis

et al., 2018). The size of axonal mitochondria is functionally
Cell 185, 1082–1100, March 17, 2022 1085
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Figure 3. Resource statistics

(A and B) Neuron (A) and non-neuronal (B) type classifications.

(C) Estimated synapse detection performance (STAR Methods).

(D and E) Dendrite (D) and axon (E) lengths for proofread cells with accurate compartment labels, measured as path length between each soma and its skeleton

leaves (STAR Methods). Points show median branch length for each cell. Lines show the 5th and 95th percentiles (npyr = 351, ninh = 34).

(F and G) The total dendritic path length (F) or apical and basal path length (G) for each PyC (n = 351). Red line shows the median (dendritic = 1.475 mm, basal =

1.118 mm, apical = 0.309 mm). The average length from light microscopy data is shown on the right in gray (Gilman et al., 2017).

(H) Global orientation selectivity index (gOSI) of all cells with activity traces (blue, n = 112) and significantly tuned orientation selective (OS) cells (red, n = 38).

(I) Global direction selectivity index (gDSI) of OS cells (n = 38).

(J) Distribution of preferred orientation of OS cells (n = 38).

See also Data S1.
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important for presynaptic release properties (Sun et al., 2013;

Kwon et al., 2016; Cserép et al., 2018; Lewis et al., 2018). The

contrast between axonal and dendritic mitochondria is believed

to arise from differences in the balance between organelle fusion

and fission (Lee et al., 2018; Rossi and Pekkurnaz, 2019). Mito-

chondrial fusion, fission, and trafficking have been linked with

synaptic plasticity (Divakaruni et al., 2018; Rangaraju et al.,

2019) and neurite branching (Li et al., 2004; Bertholet et al.,

2013; Courchet et al., 2013; López-Doménech et al., 2016; Lewis

et al., 2018). Given these applications, quantifying the spatial or-

ganization of mitochondria has biological significance. Our EM

reconstruction allows for characterizing how mitochondrial ar-

chitecture varies between and within compartments of a neuron,

because it includes large fractions of neuronal arbors, unlike pre-
1086 Cell 185, 1082–1100, March 17, 2022
vious EM reconstructions of mitochondria in smaller volumes

(Kasthuri et al., 2015; Smith et al., 2016; Bloss et al., 2018; Calı̀

et al., 2018).

We first characterized mitochondrial structure in different

PyC compartments. In the 351 PyCs with accurate compart-

ment labels, we automatically labeled each mitochondrion as

occupying axon, soma, apical dendrite, or basal dendrite

(STAR Methods). We computed the volume of each mitochon-

drion as well as its mitochondrial complexity index (MCI; Vin-

cent et al., 2019) to measure the shape complexity of individual

organelles and compared these values across compartments

(Figures 4C and S2A). Selecting statistical comparisons by

ordered median value, axonal mitochondria (naxonal = 11,484,

median = 0.013 mm3, interquartile range (IQR) = [0.008 mm3,
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Figure 4. Spatial organization of mitochondria and synapses in L2/3 PyCs
(A) Mitochondrial segmentation cutout.

(B) PyC 3D rendering with mitochondria. Insets show the soma (top) and axon (bottom).

(C) Comparison of mitochondrial volume by compartment (naxonal = 11,484, nsomatic = 90,193, napical = 18,608, nbasal = 53,318 from 351 PyCs; one-tailed Mann-

Whitney U tests; *p < 1 3 10�86, **p z 0). Boxes show the IQR, and whiskers show the 5th and 95th percentiles.

(D and E) Mitochondrial volume per unit length (D) and mitochondrial path length per unit length (E) at different distances to soma.

(F) Median overlap (red) or uncovered (blue) path length within dendritic segments.

(G–I) Median dendrite diameter (G), linear synapse density (H), and areal synapse density (I) at different distances to soma.

(J) Coefficient of variation for linear (red) and areal (blue) synapse density at different distances to soma.

Dots and shaded regions in (D), (E), (G), (H), and (I) show mean +/� SD at each distance bin. n = 29,591.

Scale bars: 1.5 mm in (A); 10 mm in (B), 5 mm (top inset), 2.5 mm (bottom inset).

See also Figure S2.
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0.021 mm3]) were on average smaller than somatic mitochon-

dria (nsomatic = 90,193, median = 0.033 mm3, IQR =

[0.013 mm3, 0.080 mm3]; one-tailed Mann-Whitney U test: p z
0) and had smaller MCI values (p z 0). Somatic mitochondria

were smaller than local apical mitochondria (napical = 18,608,

median = 0.062 mm3, IQR = [0.019 mm3, 0.205 mm3], p z 0)

and had smaller MCI values (p z 0). Lastly, local apical mito-

chondria were slightly smaller than basal dendritic mitochon-

dria (nbasal = 53,318, median = 0.095 mm3, IQR = [0.027 mm3,

0.242 mm3], p < 1 3 10�85) and had smaller MCI values (p <

1 3 10�28). Comparing median values across compartments,

we observed a roughly 7.5:1 size ratio between basal and

axonal mitochondria, in agreement with previous work (Lewis

et al., 2018), and a 2.5:1 ratio between somatic and axonal

mitochondria.

EM resolution is helpful for the analysis of somatic mitochon-

dria, compared with diffraction-limited light microscopy, because
they are densely intermingled (Figure 4B). A previous report that

mitochondria are smaller in the soma than in the neurites (Calı̀

et al., 2019) is consistent with our finding, as Calı̀ et al., (2019)

noted that their neurite mitochondria were mostly dendritic.

Size gradients might also exist in the perisomatic neurites to

realize these differences. We measured the path length covered

by each mitochondrion throughout neurites of the 351 PyCs,

divided the neurites into segments (each roughly 10-mm long),

and studied the lengths of mitochondria present in any segment

at a binned distance from the soma (Figures S2B–S2D). The

length distribution for axonal mitochondria (Figure S2B) de-

creases slightly across the distances wemeasured. On the other

hand, themedianmitochondrion length for basal and apical den-

drites (Figure S2C) shows a steady increase until roughly 50 mm

from the soma and then plateaus until neurites reach the borders

of the volume (�125 mm). These dendritic distributions suggest

that the largest mitochondria are absent from this proximal
Cell 185, 1082–1100, March 17, 2022 1087
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region. Still, the dendritic graphs (Figures S2C–S2D) should be

interpreted with caution, as large dendritic mitochondria can

skew the distribution of many distance bins.

Small-scale variation in the need for ATP production and cal-

cium buffering (Lee et al., 2018; Rossi and Pekkurnaz, 2019)

may be visible in covariation of local mitochondria. ATP is pro-

duced at the mitochondrial internal membrane and calcium is

sequestered by the matrix (Carafoli, 2003), the space enclosed

by the internal membrane. As the matrix could not be consis-

tently resolved in our images, we used mitochondrial volume

contained within a neurite segment as a proxy of mitochondrial

matrix measurements.

Of the 351 PyCs, 347 had basal dendrites in the volume. Using

the basal dendrite segments from the analysis of Figure S2C, we

computed two local measures of mitochondrial density in these

segments (Figure S2E; STAR Methods): mitochondrial volume

per unit path length (Figures 4D and S2O) and the ratio of mito-

chondrial length to path length (Figures 4E and S2P; also called

mitochondrial index [Li et al., 2004]). The average mitochondrial

index over segments is roughly 70%–80% in the perisomatic

dendrites and rises to an approximately constant value near

90% for distances more than 60 mm from the soma (Figures

S2H and S2P). The average of the mitochondrial volume per

path length has similar behavior (Figure S2O).

In distal dendrites, there is little overlap between mitochondria

(Figure 4F). Instead, there are clear gaps in mitochondrial

coverage. In the perisomatic region, we observed both gaps

and overlap, and the variance of the mitochondrial index

increases.

We estimated the shaft diameter of basal dendrites from the tri-

angle meshes (STAR Methods). The diameter decreased mono-

tonically with distance from the soma (Figures 4G and S2R),

consistent with prior reports (Larkman, 1991a; Benavides-Pic-

cione et al., 2020). Most of this decrease is perisomatic, with

less change beyond 60 mm (Figure S2I). Given that mitochondrial

volume per unit length is roughly constant along distal dendrites,

whereas the dendrite shaft diameter decreases, the volume frac-

tion of the dendrite occupied by mitochondria increases with dis-

tance from the soma (Figures S2F and S2Q). The distribution of

mitochondria with respect to synapses is described below after

characterizing the spatial organization of synapses.

Spatial organization of synapses onto excitatory and
inhibitory cells
Dendritic structure is important for understanding dendritic func-

tion (Stuart et al., 2016). For example, dendritic tapering (e.g.,

Figure 4G) has been hypothesized to optimize signal transmis-

sion from synapse to soma (Bird and Cuntz, 2016). Theoreticians

predicted that somatic responses to distal synapses should be

attenuated (Rall and Rinzel, 1973), but experiments have found

that all synapses ‘‘democratically’’ produce the same response

independent of distance from the soma (Magee, 2000). To un-

derstand such issues, especially through computational

modeling (Cook and Johnston, 1997), it is important to quantify

how properties of dendrites and synapses vary with distance

from the soma.

Previous work measured the density of synapses received by

PyC dendrites and characterized how this density depends on
1088 Cell 185, 1082–1100, March 17, 2022
distance from the soma (Larkman, 1991b; Jacobs et al., 2001;

Megı́as et al., 2001; Elston and DeFelipe, 2002; Ballesteros-Yá-

ñez et al., 2006; Benavides-Piccione et al., 2013; Bloss et al.,

2016; Gilman et al., 2017). Such work often estimated linear syn-

apse density, the number of synapses per unit length of dendrite,

by measuring dendritic spine density. Some studies only

coarsely divided the arbor into proximal and distal regions. Our

volumetric reconstructions of dendrites allow for studying syn-

aptic densities in great detail.

Linear synapse density on basal dendrites of the 351 PyCs

with accurate compartment labels is shown in Figures 4H and

S2S and are from direct counts that do not distinguish between

excitatory and inhibitory synapses. The average density is low in

the perisomatic dendrites, rises to a maximum under 2 synap-

ses/mm at roughly 60 mm from the soma, and decreases in the

distal dendrites. The location and height of the peak match prior

measurements of spine density on basal dendrites of L3 PyCs in

mouse neocortex (Ballesteros-Yáñez et al., 2006).

We also computed the areal synapse density by using the tri-

angle meshes to estimate dendritic surface area, including both

shaft and spines. The average density rises with distance from

the soma in the perisomatic dendrites, and then plateaus at an

approximately constant value of roughly 0.33 synapse/mm2 in

the distal dendrites (Figures 4I and S2T). Areal synapse densities

have previously been reported for apical dendrites in mouse cor-

tex (Karimi et al., 2020) and dendrites of hippocampal cells

(Bloss et al., 2016). Following this work, we also computed areal

synapse density using the area of a cylinder with the same diam-

eter as the dendritic shaft. This ‘‘cylinder synapse density’’ is also

roughly invariant with distance from the soma in the distal den-

drites (Figures S2G and S2U). Figure S2I is a clear comparison

of linear synapse density and the two versions of areal synapse

density, which shows their fractional change in the distal

dendrites.

Synapse density also fluctuates across dendritic segments at

a given distance. A dimensionless measure of the size of these

fluctuations is provided by the coefficient of variation, defined

as the standard deviation divided by the mean. Areal synapse

density has a smaller coefficient of variation than linear synapse

density (Figure 4J). To summarize, both systematic and random

variations in areal synapse density are small.

Investigating covariance between synapse density and mito-

chondrial density in dendrites are of interest as mitochondria

are relevant to the energetic needs (Harris et al., 2012) and cal-

cium dynamics (Berridge, 1998; Augustine et al., 2003; Lewis

et al., 2018) of synapses.

Genetic manipulations show a coupling between mitochon-

drial and synaptic density for PyC dendrites in vitro (Li et al.,

2004; Dickey and Strack, 2011; Bertholet et al., 2013), but in vivo

studies have been lacking.

The relation between mitochondrial density and synapse den-

sity is weak for systematic variation with distance. In the distal

dendrites, the average linear density of synapses decreases

with distance from the soma by over 15% (Figure S2I), whereas

we saw previously that the average mitochondrial volume per

unit length changes by only a few percent (Figure S2H). Howev-

er, this view ignores fluctuations of synapse and mitochondrial

densities with respect to their average values, which can be



Figure 5. Cell-type-dependent properties of inhibitory neuron inputs

(A) Classified inhibitory interneurons. 1 truncated basket cell not shown.

(B) Linear synapse density for each cell class.

(C) Surface synapse density for each cell class. 1 basket cell is not included in (C) as its soma is highly truncated.

(D) Synapse size distributions (in 3.58 3 3.58 3 40 nm3 voxels) for dendrites and somas of each cell class.

(E) Synapse size for inputs from L2/3 pyramidal cells onto dendrites of each cell class.

Error bars and shaded regions in (B) and (C), respectively, indicate 95% bootstrap confidence intervals (1,000 samples).

Scale bars: 50 mm in (A).

See also Figure S3 and Data S2.
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fractionally much larger than the systematic variations. Using the

dendritic segment measurements (Figures 4E, 4G, and 4H), we

focused on distal dendrites more than 60 mm away from the

soma, where the average mitochondrial volume per unit length

is roughly invariant. We found that mitochondrial volume per

unit length is correlated with linear synapse density within this re-

gion (Pearson’s r = 0.37, n = 9,198, p < 1 3 10�300; Figure S2J).

We also found a positive correlation between dendritic diam-

eter and linear synapse density (r = 0.402, n = 9,198, pz 0; Fig-

ure S2K), similar to a previous report (Larkman, 1991b). Cylinder

synapse density is also proportional to the ratio between linear

synapse density and dendritic diameter; therefore, the positive

correlation between the latter two quantities can explain why

areal synapse density is more invariant than linear synapse

density. Dendritic diameter is also positively correlated with

mitochondrial volume per unit length (r = 0.514, n = 9,198, p z
0, Figure S2L), primarily due to gaps in coverage, as overlap is

small (Figure 4F). Analyzing the residuals of predicting linear syn-

apse density from dendritic diameter, mitochondrial volume per

unit length explained a small amount of the remaining variance

(r = 0.181, n = 9,198, p < 13 10�67, Figure S2M). Together, these

results suggest a tight covariance among mitochondrial density,
dendritic diameter, and synapse density within the basal den-

drites of this cell population.

The density of synapses onto dendrites of inhibitory cells has

also been studied in cortex (Kawaguchi et al., 2006; Kameda

et al., 2012; Hioki et al., 2013) and hippocampus (Gulyás et al.,

1999; Martina et al., 2000). This work attempted to characterize

input synapse densities in the proximal and distal arbor but either

relied on indirect synapse measurements (Kawaguchi et al.,

2006; Kameda et al., 2012; Hioki et al., 2013), focused on one tar-

geted cell type (Martina et al., 2000; Kameda et al., 2012; Hioki

et al., 2013), or coarsely characterized this proximal/distal

boundary (Gulyás et al., 1999; Martina et al., 2000; Kameda

et al., 2012; Hioki et al., 2013). Our reconstruction captured

somas and dendrites of 34 inhibitory cells, and we assigned 20

of them to traditional classes (Figure 5A; Data S2; STAR

Methods).

We calculated the linear and areal synapse densities versus

distance from the soma for individual cells (Figure S3) and aver-

aged this measure in each inhibitory class (Figures 5B and 5C).

For bipolar cells, areal density is roughly constant in distal den-

drites, as for PyCs. The data suggest that areal density might

turn out to exhibit diverse behaviors for other inhibitory classes,
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though our sample sizes are small. These panels collapse each

cell to a single measurement for each distance bin, and then

average over cells. The sample size for each class is the number

of cells in that class, whereas the sample size in Figures 4 and S2

is the number of dendritic segments (STAR Methods).

Synapse sizes reflect their physiological strength and reliability

(Bailey and Chen, 1983; Bourne and Harris, 2011; Bailey et al.,

2015; Holler et al., 2021). Synapse size (de Vivo et al., 2017; San-

tuy et al., 2018) and spine size (Loewenstein et al., 2011) have

been measured and modeled using log-normal distributions,

though there are also reports of bimodal distributions (Dorken-

wald et al., 2019; Spano et al., 2019). Little is known about

how synapse size distributions vary across cell classes and com-

partments. We computed these distributions for synapses onto

dendrites and somas for inhibitory cell classes (Figure 5D). We

also provide the size distributions after restricting the synapses

to those from confirmed L2/3 PyCs (Figure 5E). Our sample sizes

are limited, but these distributions could suggest hypotheses for

future work comparing cell classes and compartments.

Predicting motif frequencies from degree sequence
Synaptic physiology studies in brain slices proposed that bidi-

rectional connections between cortical PyCs are ‘‘overrepre-

sented,’’ or more frequent than expected by chance (Markram

et al., 1997; Le Bé andMarkram, 2006;Wang et al., 2006). Similar

conclusions have been drawn for some 3-cell connectivity motifs

(Song et al., 2005), which have been interpreted as evidence for

cortical circuit theories, such as neuronal group selection (Edel-

man, 1987; Perin et al., 2011), neuron clustering (Litwin-Kumar

and Doiron, 2012; Klinshov et al., 2014), and attractor networks

(Brunel, 2016; Zhang et al., 2019).

These claimswere relative to an Erd}os-Rényi (ER) model, but a

pioneering paper on network motifs (Milo et al., 2002) used a

more sophisticated configuration (CFG)model of random graphs

(Newman, 2018). Reports of overrepresented motifs in

C. elegans (Milo et al., 2002; Reigl et al., 2004; Varshney et al.,

2011; Cook et al., 2019) have all been based on a CFG model.

Using our PyC graph, we reexamined claims of motif overrep-

resentation in the cortex by comparing with a CFG model. The

‘‘in-degree’’ of a cell is defined as the number of its presynaptic

partner cells, whereas the ‘‘out-degree’’ of a cell is the number of

its postsynaptic partner cells. Both in-degree and out-degree

vary greatly in our large circuit of connected PyCs, more than

would be expected from ER random graphs (Figure 6D). We

considered a CFG model in which the degree sequence of every

random graph is constrained to be the same as that of the

observed graph; all in-degrees and out-degrees are matched

(Fosdick et al., 2018). We hypothesized that the degree

constraint alone would lead to more accurate predictions of

motif frequencies, as proposed (Song et al., 2005; Gal et al.,

2017; Vegué et al., 2017).

As mentioned above, ER models treat all cell pairs as having

the same probability of connection, an assumption that is pre-

sumably violated by cells that are highly truncated by the borders

of the volume.We therefore excluded all PyCs with a total axonal

length less than 100 mm, leaving 111 PyCs in the graph to be

analyzed. The criterion was axonal truncation because dendritic

arbors are more complete by comparison (Figures 3F and 3G).
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Below, we will discuss the effect of changing the 100 mm

threshold that defines a ‘‘highly truncated’’ axon.

If a pair of cells is randomly drawn from these 111 PyCs, their

connection probability is 5.4% (95% CI = [5.0%, 5.8%]). The

number of bidirectionally connected pairs is 1.63 3 higher than

the prediction of the ER model, formed by squaring the connec-

tion probability (Figure 6E, 95% CI = [1.11, 3.04]). This result is

qualitatively consistent with many brain slice studies (Markram

et al., 1997; Song et al., 2005; Le Bé and Markram, 2006;

Wang et al., 2006).

For CFG, we sampled from the set of graphs with the same

degree sequence as our cortical circuit by applying degree-pre-

serving edge swaps (Figure 6A) with the ‘‘hold’’ technique (Artzy-

Randrup and Stone, 2005). We took n Monte Carlo samples and

compared their motif counts with the observed data. We found

that bidirectional connections were about 1.373 more frequent

than the expected CFG count (Figure 6E, 95% CI = [1.04,

2.07], n = 1,000), which is less than the ER overrepresentation

(Wilcoxon rank-sum test p = 6.2 3 10�66, n = 1,000). The CFG

overrepresentation remains statistically significant, though the

p value is larger than its ER analog (Figure 6F; Table S1; CFG:

permutation test p = 0.043, n = 1,000; ER: permutation test p <

0.001, n = 1,000).

Most of the highly connected 3-cell motifs (#10–16 in Figure 6G)

are overrepresented relative to ER (Figure 6G), consistent with

previous work (Song et al., 2005; Perin et al., 2011). Here, we

used a generalization of ER (gER) that preserves frequencies of

both unidirectional and bidirectional connections (Figure 6B;

Song et al., 2005). The overrepresentations are reduced, however,

when compared with CFG (Figure 6G; Table S2). A scatterplot

compares model predictions of 3-cell motif frequencies, in which

CFG is visibly more accurate than gER (Figure 6H). Furthermore,

the overrepresentations of motifs 4, 10, 11, and 12 are statistically

significant relative to gER, but not relative to CFG (Table S2). This

better fit is not due to the inflation of confidence intervals. Rather,

the standard deviation is much smaller for CFG than for gER for

motif 4 (sgER = 108.81, sCFG = 66.73; n = 1,000), and it is of similar

size for other motifs (Table S2).

In a network with high clustering or transitivity (Holland and

Leinhardt, 1971), if a is connected to b, and b is connected to

g, then a and g are likely connected. This is quantified by the

clustering coefficient:

C = Pr½a � gja � b^b � g� (Equation 1)

where a�bmeans that a is connected to b and the nodes (a, b, g)

are drawn randomly from the network (Figure 6C). We can check

the claim that cortical networks are highly clustered (Perin et al.,

2011) by rewriting the clustering coefficient as

C =

�
1+

1

3

#motifs 4� 9

# motifs 10� 16

��1

(Equation 2)

which is a function of the relative frequency of motifs containing

two connected pairs (4–9) versus those containing three con-

nected pairs (10–16). The observed clustering coefficient

(COBS = 0.163; Table S3) is much higher than predicted by gER

Alexander Bae



Figure 6. Connectivity motif frequencies can be predicted from degree sequences

(A) Sampling from the configuration model (Artzy-Randrup and Stone, 2005). Swapping connected partners preserves in- and out-degrees.

(B) A generalized Erd}os–Rényi (ER) model holding the frequency of bidirectional connections (puni z 4.92 3 10�2, pbi z 4.75 3 10�3).

(C) The clustering coefficient expressed with 3-cell motif frequencies.

(D) The observed in- and out-degree distributions and their expected distributions in a standard ER model (edge probability = 0.0540). Red: observed; black,

dashed: ER. Histograms are calculated for 8 bins of equal width on a log scale. Expectations are estimated with 100 samples from the ER model.

(E) 2-cell motif frequencies in the observed network and a configurationmodel (CFG) relative to the ERmodel. Shaded regions show the smoothed distributions of

motif counts sampled from the configuration model. White points show medians, solid vertical lines show quartiles, and dashed lines show the 95% confidence

interval for 1,000 samples.

(F) Comparison of 2-cell motif counts in the ER and CFGmodels. Circles indicate mean counts sampled from the CFGmodel, and triangles indicate mean counts

sampled from the ER model.

(G) Same as (E) for 3-cell motif frequencies in the observed network and the CFG model relative to a generalized ER model (gER).

(H) Same as (F) for 3-cell motif counts in the gER and CFG model.

(I) The common neighbor rule is significantly more prominent in the pyramidal cell network than in gER random networks. Gray: CFG model; black, dashed: gER

random networks; red: observed data. (Red slope: R2 = 0.88, p = 6.1 3 10�5; gray: R2 = 0.99, p = 5.2 3 10�9; z-test) Error bars show SD of 100 samples.

See also Figures S4–S6 and Tables S1–S3.

ll
Resource
(CgER = 0.103, 95% CI = [0.086, 0.122], n = 1,000) but only

marginally higher than predicted by CFG (CCFG = 0.150, 95%

CI = [0.140, 0.161], n = 1,000).
Beyondmotif frequencies, the connection probability for a pair

of cortical PyCs was reported to increase with the number of

common synaptic partners (Perin et al., 2011). This ‘‘common
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neighbor rule’’ generalizes the idea of high network clustering

(Perin et al., 2011) and is inconsistent with the ER model. For

our reconstructed circuit, the common neighbor rule was largely

predicted by CFG (Figure 6I), as also reported inC. elegans (Azu-

lay et al., 2016).

That CFG outperforms ER at predicting motif frequencies was

not a foregone conclusion, as it is possible to construct graphs

such that CFG falls short of ER in predicting motif frequencies

(Figure S6E). CFG can also be compared with ER using criteria

designed to handle the trade-off between goodness of fit and

model simplicity. By applying the minimum description length

principle (Rissanen, 1978), we found that CFG is superior to ER

as amodel of the PyC graph, even after accounting for the added

complexity of CFG’s extra parameters (STAR Methods).

The above analysis excluded PyCs with an axon length less

than 100 mm.We found that increasing the axon length threshold

improved the fit to observed motif frequencies for both models

(note the vertical scale in plots) and reduced differences between

the models (Figures S4 and S5). When we compared with other

model variants (Figures S6B–S6D; Tables S2 and S3), general-

izing CFG to preserve frequencies of bidirectional connections

for each neuron (‘‘bi-degree’’; Figure S6A) slightly improved the

fit, but preserving the overall frequencies of bidirectional con-

nections (‘‘bi-edge’’; Table S2) did not.

In C. elegans, overrepresentation of bidirectional connections

can partially be explained by adjacency (Durbin, 1987; Reigl

et al., 2004). If a connection from neuron a to b exists, then the

neurons must be adjacent, increasing the probability of a recip-

rocal connection from b to a. The situation is more subtle for

cortical neurons because of the axon-dendrite distinction.

Instead, we evaluated a proximity-based model in which connec-

tion probability is a function of soma separation (STAR Methods,

Figure S6F). This model’s performance is mixed relative to gER

(Figures S6G and S6H). Models of neuron geometry that are

more sophisticated than proximity are also worth exploring (Gal

et al., 2017, 2020).

There are some statistically significant deviations from the

CFG model (Figures S4 and S5; Table S2; N.B. our permutation

tests are effectively ‘‘one-tailed,’’ and we have not corrected for

multiple comparisons), but these seem minor relative to devia-

tions from ER. Given that motif frequencies, the clustering coef-

ficient, and the common neighbor rule are predicted quite well

from degree sequence by a CFG model, non-randomness of

cortical connectivity seems more subtle than has commonly

been supposed.

Relation of in-connection density to visual function
Using our PyC graph, we showed that the frequencies of certain

connectivity motifs can be predicted accurately from the degree

sequence. For 112 of these same PyCs, calcium imaging data

are available (Figures 7A and 7C), allowing us to relate degree to

visual function. We define the in-connection density of a node in

thePyCgraphas the in-degreedividedby the total dendritic length

of the postsynaptic neuron. In this case, degree counts only

connections between PyCs with somas in the EM volume. The

in-connection density indicates a cell’s tendency to receive con-

nections from nearby PyCs, relative to a baseline predicted from

its total dendritic length in the EM volume (Figures S7D and S7E).
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When PyCs are activated by visual stimuli, their responses are

thought to be amplified by local recurrent excitation from neigh-

boring PyCs (Douglas et al., 1995; Lien and Scanziani, 2013; Li

et al., 2013; Cossell et al., 2015). In-connection density estimates

local recurrent excitation, so we hypothesized that L2/3 PyCs

with higher in-connection density would exhibit stronger re-

sponses to visual stimuli.

For each calcium-imaged cell, we extracted a direction tuning

curve (Figure 7D) and computed a global orientation selectivity

index (gOSI) and a global direction selectivity index (gDSI) (Ring-

ach et al., 2002; Figures 3H and 3I; STAR Methods). To consider

only responses to directional stimuli (Figure 7B), we restricted

further analysis to cells with statistically significant gOSI values

as evaluated by a permutation test (Ecker et al., 2014; Baden

et al., 2016). We observed a strong bias toward horizontal orien-

tation preference (Figure 3J) consistent with an age-dependent

bias toward cardinal orientations in previous work (Rochefort

et al., 2011; Hagihara et al., 2015).

As hypothesized, we found that a cell’s trial-averaged

response to its preferred direction or orientation tended to be

larger for cells with higher in-connection density (Pearson’s r =

0.44, n = 38, p = 0.006; Figure 7H). By contrast, trial-averaged

response was not correlated with the linear synapse density of

the cell’s dendrites (from all sources; r = �0.28, n = 38, p =

0.095; Figure 7I; STAR Methods).

We further hypothesized that L2/3 PyCs with higher in-

connection density would exhibit more reliable responses to vi-

sual stimuli. Trial-to-trial variability (Stein et al., 2005) is shown

for example cells in Figure 7G. Cells 2 and 3 exhibited little or

no response for many trials, yet they responded strongly to their

preferred stimuli in several trials and did not respond to non-

preferred stimuli, and accordingly, their gOSI or gDSI values

were statistically significant. These examples show that a cell

can be well-tuned for direction or orientation and respond

intermittently.

For each trial, we set a threshold for the response of a neuron

to its preferred stimulus (Figure 7C; STAR Methods). A cell’s

intermittency index was defined as the fraction of trials for which

its response did not exceed the threshold. Most cells have inter-

mittency values exceeding 50% (Figure 7F). These values are

likely overestimates, because some spikes may have evaded

detection (Huang et al., 2021), so we focused our analysis on

relative differences between cells rather than absolute intermit-

tency values.

We found that in-connection density was negatively correlated

with intermittency (Pearson’s r = �0.43, n = 38, p = 0.007; Fig-

ure 7J). We also found that intermittency was not correlated

with linear synapse density (Pearson’s r = 0.05, n = 38, p =

0.744; Figure 7K).

Other things being equal, more intermittent cells are expected

to have lower trial-averaged responses (Figure 7E). To separate

the effects of these two variables, we fit a linear model of

the form:

ria = b1a+ b2di + b3adi + c; (Equation 3)

where a is a binary variable for whether responses surpassed the

intermittency threshold, di represents the in-connection density,



Figure 7. In-connection density is related to visual function

(A) 2-photon calcium recording and co-registration. Layered black rectangles (left) represent the 2-photon image planes (right) cropped to roughly match the

segmentation. Arrows show cardinal axes (anterior, posterior, medial, lateral).

(B) Example visual stimuli of oriented patterns (columns with arrows) interspersed with the pink noise stimulus (columns without arrows).

(C) Examples of 2-photon recordings (left) with noise-normalized DF/F traces (top right) and deconvolved traces (bottom right, dashed line: activity threshold for

‘‘active’’ trials) extracted from cells marked with colored arrows during a single trial.

(D) Tuning curves of cells in (C). Area under the tuning curve is normalized to be equal to 1.

(E) Preferred orientation and mean response (bottom left) of orientation tuned cells, with distribution of preferred orientation (top left) and distribution of mean

response (bottom right). Dots are colored by the cell’s intermittency bin in (F). Mean response is correlated with intermittency (top right).

(F) Fraction of non-active trials (intermittency) for orientation tuned cells.

(G) Three example cells’ responses to 30 trials of their preferred directional stimulus. Example cells are the numbered dots in (E). Different colors show responses

in different trials.

(H) Mean response to preferred directions is positively correlated with in-connection density (n = 38, Pearson’s r = 0.44, p = 0.006).

(I) Mean response is not correlated with linear synapse density (n = 38, r = �0.28, p = 0.095).

(J) In-connection density is negatively correlated with intermittency (n = 38, r = �0.43, p = 0.007).

(K) Intermittency is not correlated with linear synapse density (n = 38, r = 0.05, p = 0.744).

(L) In-connection density has a greater effect on mean active responses (red, a = 1, n = 38) than mean inactive responses (blue, a = 0, n = 38, p = 0.002).

(M) Normalized histogram of Pearson correlation coefficients of spatially restricted randomizations for correlations in (H) (top, p = 0.0161) and (J) (bottom, p =

0.0182) with correlation coefficient of observed data (red dashed line).

(A) Scale cube: 10 mmedge. (C) Scale bar: 10 mm. (C and G)White: directional stimulus shown, gray: noise stimulus shown. (H, I, J, K, and L) Line: linear fit, shade:

80% prediction interval. (M) All permutation tests used 10,000 iterations.

See also Figure S7.
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and ria is the mean response for cell i given a. We found a signif-

icant interaction term b3 (p = 0.002; Figure 7L), suggesting a rela-

tionship between in-connection density and responses over the

activity threshold.

In-connection density was weakly correlated with cortical

depth (Figure S7F). Therefore, we checked whether cortical

depth, or 3D location generally, could confound the observed
correlations of mean response and intermittency with in-connec-

tion density. We computed the same correlations after shuffling

cells with similar 3D locations in the volume as a permutation test

(Figures S7G and S7H). The observed correlations in our data

were still stronger than in the permutations (mean response

p = 0.0161, intermittency p = 0.0182; Figure 7M). Together, these

results suggest that cells with higher in-connection density tend
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to be less intermittent in their responses and exhibit stronger

mean responses.

DISCUSSION

The multimodal nature and scale of our EM reconstruction of

250 3 140 3 90 mm3 of mouse visual cortex allows it to be

used to quantitatively characterize organelles, compartments,

cells, circuits, and activity, as well as their interrelations. These

vignettes and accompanying Jupyter notebooks illustrate that

our resource will be widely useful and accessible for investi-

gating a broad range of questions about cortical structure and

function.

We investigated the spatial organization of mitochondria in

different compartments of PyCs and evaluated correlations be-

tween mitochondrial volume, synapse number, and neurite

diameter in distal dendrites. Overall, we found that the size dis-

tribution of mitochondria is consistent with previous hypotheses

regarding the limits on their trafficking and dynamics (Lewis

et al., 2018). Mitochondrial volumes are positively correlated

with synapse number, consistent with the idea that dendritic

mitochondria support synaptic function through ATP production

and calcium buffering, although the relationship is difficult to

disentangle from dendritic diameter.

Our synapse analysis found the average areal synapse density

is roughly invariant with distance from the soma in the distal re-

gion of basal dendrites and fluctuates less than linear synapse

density at any distance from the soma. The observed invariance

suggests that 0.33 synapse/mm2 is a homeostatic set point for

the distal region of basal dendrites. A consequence for dendritic

biophysics is that synaptic conductances could scale linearly

with dendritic surface area. Intrinsic conductances also scale lin-

early with surface area, given the common assumption that ion

channel densities are constant. Common scaling of synaptic

and intrinsic conductances has implications for computational

modeling of dendrites.

Computational models of cortical development have assumed

that synapses behave as if they are competing for a fixed

resource (Miller, 1996), and there is experimental evidence for

this idea (Kasthuri and Lichtman, 2003). A pioneering model

(von der Malsburg, 1973) proposed that synapses compete for

dendritic area, and this could result in approximate invariance

of synapse number per unit area. According to a theoretical pre-

diction based on the random geometry of axons and dendrites,

the number of synapses received by a dendritic segment should

on average be proportional to the surface area of a cylinder that

encompasses the spines (Stepanyants et al., 2002). This propor-

tionality is similar to our observed invariance of areal synapse

density.

Our connectivity motif examination analyzing our PyC graph

using a CFG model of random graphs, as was done in

C. elegans (Milo et al., 2002; Reigl et al., 2004; Varshney et al.,

2011), was possible due to the scale of the reconstruction. Unlike

the C. elegans connectome, our PyC wiring diagram underesti-

mates connectivity because cells are truncated by the borders

of the EM volume. For the subset of 111 PyCs with at least

100 mm axon length, the connection probability for somas sepa-

rated by 50 mmor less is 8.1% (±1.1%, 95%CI, n = 2,530). This is
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less than analogous values from brain slice physiology, which

range from 14% to 22% in younger mice (Ko et al., 2011,

2013; Cossell et al., 2015). Our underestimation of connectivity

did not prevent us from replicating the well-known finding (Mark-

ram et al., 1997; Song et al., 2005; Le Bé and Markram, 2006;

Wang et al., 2006) that bidirectional connections are overrepre-

sented relative to an ER random graph model. The underestima-

tion reduces the number of bidirectional connections, but it also

reduces the ER prediction. Similarly, truncation did not prevent

us from finding an overrepresentation of bidirectional connec-

tions relative to CFG.

As we are still a long way from an entire mammalian connec-

tome (Abbott et al., 2020), truncation will remain a fact of life

for mammalian wiring diagrams. Brain slice experiments are

also subject to arbor truncation as recorded neurons are typically

only tens of microns from the surface of the slice (Stepanyants

et al., 2009; Levy and Reyes, 2012). Reconstructions of larger

cortical volumes will tell us how much our findings are affected

by truncation. For now, we should be careful about claims that

connectivity motifs are highly ‘‘nonrandom’’ in the cortex.

Overrepresentation of motifs could become more dramatic if

the analysis is restricted to strong connections (Song et al.,

2005). Connection probability is believed to decrease by adult-

hood (Jiang et al., 2016; Campagnola et al., 2021), consistent

with a notion of connectivity refinement. The current study is in

a young adult (P36) mouse, and previous studies were in juvenile

rats (Song et al., 2005; Le Bé and Markram, 2006; Perin et al.,

2011). It would be interesting to look for overrepresented motifs

in adult animals.

Finally, in examining the in-connection density to visual func-

tion, we found that in-connection density is negatively correlated

with intermittency and positively correlated with amplitude of vi-

sual response. Our finding is related to previous studies of

‘‘chorister’’ versus ‘‘soloist’’ PyCs in mouse V1 (Okun et al.,

2015). A chorister is more likely than a soloist to receive a

connection from a neighboring cell and also tends to respond

more strongly to visual stimuli. Both results are consistent with

our analysis showing that in-connection density is correlated

with the strength of a cell’s response to its preferred stimulus.

Our analysis includes cells with a wide range of in-degrees (Fig-

ures S7D and S7E), whereas previous work was restricted to

small circuits of a few cells and extrapolated to larger in-degrees

using a random graph model. Prior work also did not consider

intermittency of visual responses.

In addition to these vignettes, three articles provide in-depth

analyses showing how the resource can be used to study PyC

synapse size distributions and multi-synaptic connections (Dor-

kenwald et al., 2019), chandelier cells (Schneider-Mizell et al.,

2021), and OPCs (Buchanan et al., 2021). Two further articles

describe our reconstruction of a cubic-millimeter scale volume

(MICrONS Consortium et al., 2021; Macrina et al., 2021), which

is also publicly available.

Limitations of the study
Each analysis has assumed that PyCs in our sample are a

uniform population. Future efforts in cell typing may reveal new

dimensions to these results or provide new ways to study the

inhibitory cells. Similarly, we have often assumed that branches
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of the same neurite compartment are uniform, where the place-

ment of organelles and synapses may interact within individual

branches to affect cell function. Performing more fine-grained

analyses with these reconstructions is likely another valuable

avenue for future work. We hope that this work will stimulate

our readers to find new applications and realize the full potential

of the resource for discovery.
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gel, T.D. (2011). Functional specificity of local synaptic connections in neocor-

tical networks. Nature 473, 87–91.

Kornfeld, J., and Denk, W. (2018). Progress and remaining challenges in high-

throughput volume electron microscopy. Curr. Opin. Neurobiol. 50, 261–267.

Kubota, Y. (2014). Untangling GABAergic wiring in the cortical microcircuit.

Curr. Opin. Neurobiol. 26, 7–14.

Kubota, Y., Karube, F., Nomura, M., and Kawaguchi, Y. (2016). The diversity of

cortical inhibitory synapses. Front. Neural Circuits 10, 27.

Kwon, S.-K., Sando, R., 3rd, Lewis, T.L., Hirabayashi, Y., Maximov, A., and

Polleux, F. (2016). LKB1 regulates mitochondria-dependent presynaptic

calcium clearance and neurotransmitter release properties at excitatory syn-

apses along cortical axons. PLoS Biol. 14, e1002516.

Larkman, A.U. (1991a). Dendritic morphology of pyramidal neurones of the vi-

sual cortex of the rat: I. Branching patterns. J. Comp. Neurol. 306, 307–319.

Larkman, A.U. (1991b). Dendritic morphology of pyramidal neurones of the vi-

sual cortex of the rat: III. Spine distributions. J. Comp. Neurol. 306, 332–343.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Paraformaldehyde, 16% aqueous solution Electron Microscopy Sciences cat.#15710, CAS: 30525-89-4

Glutaraldehyde, 25% aqueous solution Electron Microscopy Sciences cat.#16220, CAS: 111-30-8

Osmium tetroxide, 4% aqueous solution Electron Microscopy Sciences cat.#19190, CAS: 20816-12-0

Potassium ferricyanide Sigma Aldrich CAS: 13746-66-2

Thiocarbohydrazide Sigma Aldrich 223220, CAS: 2231-57-4

Hard Plus Resin - 812 Electron Microscopy Sciences cat.#14115

0.2M Sodium cacodylate buffer Electron Microscopy Sciences cat.#11652

Uranyl acetate Polysciences cat.#21447-25

L-aspartic acid Sigma Aldrich CAS: 45ZU62

Lead nitrate Electron Microscopy Sciences CAS: 10099-74-8

Deposited data

Electron microscopy image volume This paper layer23.microns-explorer.org

Morphological segmentation This paper layer23.microns-explorer.org

Synaptic cleft segmentation This paper layer23.microns-explorer.org

Mitochondrion segmentation This paper layer23.microns-explorer.org

Cellular nucleus segmentation This paper layer23.microns-explorer.org

2-Photon calcium traces This paper microns-explorer.org/phase1

Deconvolved spike estimates and tuning curves This paper github.com/seung-lab/datajoint_seung

Light Microscopy coregistration volume This paper github.com/AllenInstitute/MicronsBinder/

tree/master/notebooks/vignette_analysis/

function

Synaptic connectivity tables This paper Zenodo: https://doi.org/10.5281/zenodo.5579388

PyC-PyC connectivity graph This paper Zenodo: https://doi.org/10.5281/zenodo.5579388

Cell classification table This paper Zenodo: https://doi.org/10.5281/zenodo.5579388

Mitochondrion information table This paper Zenodo: https://doi.org/10.5281/zenodo.5579388

Nucleus information table This paper Zenodo: https://doi.org/10.5281/zenodo.5579388

Cell skeletons used for analysis This paper Zenodo: https://doi.org/10.5281/zenodo.5579388

Cell triangle meshes used for analysis This paper Zenodo: https://doi.org/10.5281/zenodo.5579388

Analysis intermediate data (see MicronsBinder) This paper Zenodo: https://doi.org/10.5281/zenodo.5579388

Experimental models: Organisms/strains

Mouse line:

Cre driver: CamKIIa-Cre

Jax jax.org/strain/005359

Mouse line:tTA driver: B6;CBA-

Tg(Camk2a-tTA)1Mmay/J

Jax jax.org/strain/003010

GCaMP6f Reporter: Ai93 Allen Institute for Brain Science jax.org/strain/024103

Software and algorithms

Python 3 Python.org python.org

Reconstruction source code This paper github.com/seung-lab/microns-L23-

reconstruction; Zenodo: https://doi.org/

10.5281/zenodo.5851066

Data analysis source code This paper github.com/AllenInstitute/MicronsBinder;

Zenodo https://doi.org/10.5281/zenodo.5856928

Alembic MICrONS Consortium github.com/seung-lab/Alembic

TrakEM2 (Cardona et al., 2012) ini.uzh.ch/�acardona/trakem2.html
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Render (Zheng et al., 2018) github.com/saalfeldlab/render

VAST (Berger et al., 2018) lichtman.rc.fas.harvard.edu/vast/

PyTorch (Paszke et al., 2019) pytorch.org

ChunkFlow (Wu et al., 2021) github.com/seung-lab/chunkflow

zmesh MICrONS Consortium github.com/seung-lab/zmesh

PyChunkedGraph (Dorkenwald et al., 2020) github.com/seung-lab/PyChunkedGraph

Kimimaro: Densely Labeled Image

Skeletonization

MICrONS Consortium github.com/seung-lab/kimimaro

Igneous MICrONS Consortium github.com/seung-lab/igneous

MeshParty MICrONS Consortium github.com/sdorkenw/MeshParty

EASE (Zhou et al., 2020) github.com/zhoupc/ease

DataJoint Vathes LLC datajoint.com

Scipy: Fundamental Algorithms for Scientific

Computing in Python

(Virtanen et al., 2020) scipy.org

Seaborn: statistical data visualization (Waskom, 2021) seaborn.pydata.org

Statsmodels: Econometric and statistical

modeling with python

(Seabold and Perktold, 2010) statsmodels.org

Neuroglancer Google github.com/google/neuroglancer

ParaView National Technology & Engineering

Solutions of Sandia, LLC (NTESS),

Kitware Inc.

paraview.org

MeshLab Visual Computing Lab, ISTI, Consiglio

nazionale delle ricerche (Cnr)

meshlab.net
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, H. Sebastian Seung

(sseung@princeton.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The EM image data, cellular segmentation, synapse segmentation, mitochondrion segmentation, and nucleus segmentation

can be viewed at https://microns-explorer.org/phase1. The raw calcium imaging videos, light microscopy coregistration vol-

ume, visual stimulus, and calcium traces can be accessed via https://microns-explorer.org/phase1, and these are also avail-

able at https://github.com/seung-lab/MicronsBinder with the analysis code. Both the MicronsExplorer and MicronsBinder

websites demonstrate how to access all intermediate analysis data (deposited as a Zenodo record).

d Along with the analysis code repository (https://github.com/seung-lab/MicronsBinder), the code for generating the cell and

organelle reconstructions is available at https://github.com/seung-lab/.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse
Same sex littermates were housed together in individual cages with 1-4 mice per cage. Mice were maintained on a regular diurnal

lighting cycle (12:12 light:dark) with ad libitum access to food and water and nesting material for environmental enrichment. Mice

were housed in the Taub Mouse Facility of Baylor College of Medicine, accredited by AAALAC (The Association for Assessment

and Accreditation of Laboratory Animal Care International).
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Functional imaging was performed in a single transgenic mouse, aged P36, expressing fluorescent GCaMP6f, and its tissue was

subsequently used for circuit reconstruction using electron microscopy. The animal used for this experiment was a healthy and drug

naı̈ve male not involved in any previous procedure or experiment. The mouse was a triple-heterozygote for the following three genes:

(1) Cre driver: CamKIIa-Cre (Jax: 005359<https://www.jax.org/strain/005359>), (2) tTA driver: B6;CBA-Tg(Camk2a-tTA)1Mmay/J

(Jax: 003010<https://www.jax.org/strain/003010>), (3) GCaMP6f Reporter: Ai93 (Allen Institute). All procedures were done in accor-

dance with the Institutional Animal Care and Use Committees at Baylor College of Medicine and the Allen Institute for Brain Science.

METHOD DETAILS

Cranial window surgery
Anesthesia was induced with 3% isoflurane and maintained with 1.5% to 2% isoflurane during the surgical procedure. The mouse

was injected with 7.5 mg/kg ketoprofen subcutaneously at the start of the surgery. The anesthetized mouse was placed in a

stereotaxic head holder (Kopf Instruments), and its body temperature wasmaintained at 37�C throughout the surgery using a homeo-

thermic blanket system (Harvard Instruments). After the scalp was shaved, bupivicane (0.05 cc, 0.5%, Marcaine) was applied sub-

cutaneously. Then 20minutes later, an approximately 1 cm2 area of skin was removed above the skull, and the underlying fascia was

scraped and removed. The wound margins were sealed with a thin layer of surgical glue (VetBond, 3M), and a 13-mm stainless-steel

washer clamped in the headbar was attachedwith dental cement (Dentsply Grip Cement). At this point, themousewas removed from

the stereotaxic holder (while maintaining anesthesia), and the skull was held stationary on a small platform via the newly attached

headbar. With a surgical drill and HP 1/2 burr, we made a 3-mm craniotomy centered on the primary visual cortex (V1; 2.7mm lateral

of the midline, contacting the lambda suture), and the exposed cortex was washed with ACSF (125 mM NaCl, 5 mM KCl, 10 mM

Glucose, 10 mM HEPES, 2 mM CaCl2, 2 mM MgSO4). The cortical window was then sealed with a 3 mm coverslip (Warner

Instruments), using cyanoacrylate glue (VetBond). Themouse was allowed to recover for 1-2 hours prior to the imaging session. After

imaging, the washer was released from the headbar, and the mouse was returned to the home cage.

Widefield imaging
Prior to two-photon imaging, we acquired a low-magnification image of the 3-mm craniotomy under standard illumination. The loca-

tion of the subsequent two-photon field of view could then be identified in this image based on surface vasculature. The location of

the target two-photon imaging site in V1was determined by retinotopicmapping using intrinsic signal imaging or GCaMP6 imaging at

low magnification.

Two-photon imaging
Imaging for themousewas performed in V1, in a 40034003200 mm3 volumewith the superficial surface of the volume at the border of

L1 and L2/3, approximately 140 mmbelow the pia. Laser excitation was at 920 nm at 25-45mW, depending on depth. We used a 253

Nikon objective with a numerical aperture of 1.1. The imaging point-spread function was measured with 500 nm beads in agarose

prior to the experiment and was approximately 0.530.533 mm3 in x, y, and z. Pixel dimensions of each imaging frame were

2563256 and pixel pitch in x and y were approximately 1.6mm.

Functional imaging scans
Imaging data was collected with a resonant scanning microscope (ThorLabs) and software (Scanimage 5.1, Vidrio). Nine scans were

collected in total, starting superficially andmoving deeper into the cortex with each subsequent scan. During each 30-minute scan, a

piezo controlled manipulator (PI-726, Physik Instruments) moved the microscope objective between three different z-planes (‘‘focal

planes’’). These three focal planes were separated by an average of about 8 mm by the piezo, and each focal plane was imaged at

14.8313 frames per second. We refer to each trio of sequential focal planes as one imaging ‘‘volume’’. We collected 9 volumes with 3

focal planes/volume, producing 27 focal planes in total to span the 200 mm depth of the overall 40034003200 mm3 imaging volume.

Two color channels were recorded: channel one was GCaMP6 calcium imaging, and channel two was blood vessels labeled with red

dye (Sulfarhodamine 101).

After the datawas collected,we learned that the piezo command functionality of ScanImage 5.1was not fully optimized, so themove-

ment of the objective between focal planes was slower than expected. As a result, the posterior edge of the field of view of each focal

plane was curved in the Z dimension by several microns. This curvature was a deterministic function of the piezo command and can be

recovered from the high-resolution (1 mmspacing) structural stack collectedwith each functional scan, sowe have found that it does not

greatly affect the alignment with the EMdata. All scans were raster- andmotion-corrected. Motion correction in X and Ywas performed

by sub-pixel cross-correlation. Focal plane alignment into the structural stack was performed by 3D image-based cross-correlation.

High-resolution structural stack
To facilitate alignment with EM, at the beginning of the experiment, we collected a high-resolution structural stack of the imaging

volume with the same field of view and (x, y) location as the functional scans. Each plane had resolution of approximately

8003800 nm2, higher resolution than the functional scans. This stack began 310 mm deep and ended at the cortical surface, in

one micron steps.
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Behavioral monitoring
Themousewas head-restrained but could walk on a treadmill during imaging. During imaging, we collected treadmill speed at 200Hz

and recorded amovie of themouse’s eye at 20Hz. Pupil size and (x, y) position were extracted from thismovie using customMATLAB

and Python code. Both treadmill traces and pupil traces were subsequently synchronized and interpolated to the imaging clock

(27300 samples synchronized to the first focal plane of each imaging volume).

Visual stimulus
Visual stimuli were presented at 60 fps and synchronized to imaging and behavioral data via a photodiode that recorded the timing

of each stimulus frame. For each 30-minute 40-second scan (27300 volumes at 14.8313 volumes per second), we presented 30

one-minute trials of a colored-noise stimulus (Niell and Stryker, 2008) interspersed with periods of coherent motion of oriented

noise. Each one-minute trial contained 16 stationary moving stationary blocks, with a different direction presented in each block,

pseudo-randomly ordered. The stimulus was interpolated and aligned to the calcium imaging frame times and stored as a

903160327300 array. The first 200 frames were blank screen; they were used for extracting calcium traces but not for the

analysis.

The visual stimuli were not identical for different experiments at multiple depths, yet they share the same underlying structure.

EM & two-photon co-registration
Centers of cell bodies were annotated manually for both EM and two-photon, high-resolution stacks. A total of 512 points were

labeled in each dataset, and the corresponding cells were determinedmanually by comparing the relative locations of the cell bodies

in both datasets. Based on this list of 512 correspondence points, an affine transformation was estimated. This transformation was

applied to the entire EM volume to co-register the volume onto the high-resolution, two-photon structural stack.

Trace extraction and spike inference
Calcium traces were extracted with the EASE algorithm (Zhou et al., 2020) after normalizing each pixel in the two-photon movies to

have the same noise level (Pnevmatikakis et al., 2016). All the traces used in the analysis were signals from the somas. To extract

these signals, a corresponding scan for each cell was identified by finding the closest scan from the soma location. The EASE algo-

rithm uses reconstructed cells for initialization, so cells with severely cut-off somas were excluded from the analysis (n=3). For the

same reason, calcium traces were extracted only for a subset of reconstructed cells that overlap with the calcium recording volume.

Activity traces of cells that had a low signal-to-noise ratio were neglected from the extraction. Spike inference was performedwith the

modified OASIS algorithm (Friedrich et al., 2017), which is implemented within the EASE package.

Tissue preparation and staining
The protocol of Hua et al. (Hua et al., 2015) was combined with the protocol of Tapia et al. (Tapia et al., 2012) to accommodate a

smaller tissue size and to improve transmission EM (TEM) contrast. The mouse was transcardially perfused with 2.5% paraformal-

dehyde and 1.25% glutaraldehyde in 0.08 M sodium cacodylate buffer, pH 7.4. After dissection, 200 mm-thick coronal slices were

cut with a vibratome and post-fixed for 12-48 hours. Following several washes in 0.1 M cacodylate buffer, pH 7.4 (CB), the slices

were fixed with 2% osmium tetroxide in CB for 90 minutes, immersed in 2.5% potassium ferricyanide in CB for 90 minutes,

washed with deionized (DI) water for 2330 minutes, and treated with freshly made and filtered 1% aqueous thiocarbohydrazide

at 40�C for 10 minutes. The slices were washed 2330 minutes with DI water and treated again with 2% osmium tetroxide in water

for 30 minutes. Double washes in DI water for 30 minutes each were followed by immersion in 1% aqueous uranyl acetate over-

night at 4�C. The next morning, the slices in the same solution were placed in a heat block to raise the temperature to 50�C for 2

hours. The slices were washed twice in DI water for 30 minutes each, and then incubated in Walton’s lead aspartate, pH 5.0, for 2

hours at 50�C in the heat block. After another double wash in DI water for 30 minutes each, the slices were dehydrated in an

ascending ethanol series (50%, 70%, 90%, 100% 3 3) for 10 minutes each and two transition fluid steps of 100% acetonitrile

for 20 minutes each. Infiltration with acetonitrile:resin dilutions (2p:1p, 1p:1p and 1p:2p) were performed on a gyratory shaker over-

night for 4 days. Slices were placed in 100% resin for 24 hours followed by embedding in Hard Plus resin (EMS, Hatfield, PA).

Slices were cured in a 60�C oven for 96 hours. The best slice based on tissue quality and overlap with the two-photon region

was selected.

Sectioning and collection
A Leica EM UC7 ultramicrotome and a Diatome 35-degree diamond ultra-knife were used for sectioning at a speed of 0.3 mm/sec.

Eight to ten serial sections were cut at 40-nm thickness to form a ribbon, after which the microtome thickness setting was set to 0 in

order to release the ribbon from the knife. Using an eyelash probe, pairs of ribbons were collected onto copper grids covered by

50-nm thick LUXEL film. The grids were then positioned in a stick that could carry up to 16 grids. The stick works as a cartridge, which

is then screwed to the VOXA GridStage Sprite (Yin et al., 2020) that handles the samples inside the TEM. As each ribbon has multiple

sections, each grid has multiple ribbons, and each stick has multiple grids, each imaging session could include hundreds of sections

until vacuum would have to be broken and the stick replaced.
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Transmission electron microscopy
We made several custom modifications to a JEOL-1200EXII 120-kV transmission electron microscope (Yin et al., 2020). A col-

umn extension and scintillator magnified the nominal field of view by tenfold with negligible loss of resolution. A high-resolution,

large-format camera allowed fields of view as large as (13 mm)2 at 3.58-nm resolution. Magnification reduced the electron den-

sity at the phosphor, so a high-sensitivity sCMOS camera was selected and the scintillator composition tuned to generate high-

quality EM images with exposure times of 90-200 ms. Sections were acquired as a grid of 384033840-px2 images (‘‘tiles’’) with

15% overlap.

Alignment in two blocks
The dataset was divided by sections into two blocks (1216 and 970 sections), with the first block containing substantially more folds.

Initial alignment and reconstruction tests proceeded on the second block of the dataset. After satisfactory results were achieved, the

first block was added, and the whole dataset was further aligned to produce the final 3D image. The alignment process included

stitching (assembling all tiles into a single image per section), rough alignment (aligning the set of section images with one affine

per section), coarse alignment (nonlinear alignment on lower-resolution data), and fine alignment (nonlinear alignment on higher-res-

olution data).

Alignment, block one
The tiles of the first block were stitched into one montaged image per section and roughly aligned using a set of customized and

automated modules based on the TrakEM2 (Cardona et al., 2012) and Render (Zheng et al., 2018) software packages.

Stitching

After acquisition, a multiplicative intensity correction based on average pixel intensity was applied to the images, followed by a lens

distortion of individual tiles using nonlinear transformations (Kaynig et al., 2010). Once these corrections were applied, correspon-

dences between tiles within a section were computed using SIFT features, and each tile was modeled with a rigid transform.

Rough alignment

Using 20x downsampled stitched images, neighboring sections were roughly aligned (Saalfeld et al., 2012). Correspondences were

again computed using SIFT features, each section was modeled with a regularized affine transform (90% affine + 10% rigid), and all

correspondences and constraints were used to generate the final model of one affine transform per tile. These models were used to

render the final stitched section image into rough alignment with block two.

Alignment, block two
The second block was stitched and aligned using the methods of (Saalfeld et al., 2012) as implemented in Alembic (Macrina and

Ih, 2018).

Stitching

For each section, tiles containing tissuewithout clear image defects were contrast normalized by centering the intensities at the same

location in each tile, stretching the overall distribution between the 5th and 95th intensity percentiles. During imaging, a 203-down-

sampled overview image of the section was also acquired. Each tile was first placed according to stage coordinates, approximately

translated based on normalized cross-correlation (NCC) with the overview image, and then finely translated based on NCC with

neighboring tiles. Blocks were matched in the regions of overlap between tiles using NCC with 140-px block radius, 400-px search

radius, and a spacing of 200 px. Matches were manually inspected with 1x coverage, setting per-tile-pair thresholds for peak of

match correlogram, distance between first and second peaks of match correlograms, and correlogram covariance, and less

frequently, targetedmatch removal. A graphical user interface was developed to allow the operator to fine-tune parameters on a sec-

tion-by-section basis, so that a skilled operator completed inspection in 40 person-hours. Each tile was modeled as a spring mesh,

with nodes located at the center of each block-match operation and spring constants 1/100th of the constant for the between-tile

springs. The energy of all spring meshes within a section were minimized to a fractional tolerance of 10-8 using nonlinear conjugate

gradient. The final render used a piecewise affine model defined by the mesh before and after relaxation, and maximum-intensity

blending.

Rough alignment

Using 203-downsampled images, block matching between neighboring sections proceeded using NCC with 50-px block radius,

125-px search radius, and 250-px spacing. Matches were computed between nearest neighbor section pairs, then filtered manually

in eight person-hours. Correspondences were used to develop a regularized affinemodel per section (90% affine + 10% rigid), which

was rendered at full image resolution.

Coarse alignment

Using 43-downsampled images, NCC-based block matching proceeded with 300-px block radius, 200-px search radius, and 500-

px spacing. Matches were computed between nearest and next-nearest section pairs, then manually filtered by a skilled operator in

24 person-hours. Each section was modeled as a spring mesh with spring constants 1/10th of the constant for the between-section

springs, and the energy of all spring meshes within the block were minimized to a fractional tolerance of 10-8 using nonlinear conju-

gate gradient. The final render used a piecewise affine model defined by the mesh.
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Fine alignment

Using 23-downsampled images, NCC-based block matching proceeded with 200-px block radius, 113-px search radius, and 100-

px spacing. Matches were computed between nearest and next-nearest section pairs, then manually filtered by a skilled operator in

24 hours. Modeling and rendering proceeded as with coarse alignment using spring constants, which were 1/20th of the constant for

the between-section springs.

Alignment, whole dataset
Eleven blank sections were inserted manually between sections where the cutting thickness appeared larger than normal. The align-

ment of the whole dataset was further refined using the methods of (Saalfeld et al., 2012) as implemented in Alembic (Macrina and

Ih, 2018).

Coarse alignment

Using 643-downsampled images, NCC-based blockmatching proceeded with 128-px block radius, 512-px search radius, and 128-

px spacing. Matches were computed between neighboring and next-nearest neighboring sections, as well as 24 manually identified

section pairs with greater separation, then manually inspected in 70 person-hours. Section spring meshes had spring constants

1/20th of the constant for the between-section springs. Mesh relaxation was completed in blocks of 15 sections, 5 of which were

overlapping with the previous block (2 sections fixed), and each block relaxing to a fractional tolerance of 10-8. Rendering proceeded

as described above.

Fine alignment

Using 43-downsampled images, NCC-based block matching proceeded with 128-px block radius, 512-px search radius, and 128-

px spacing. Matches were computed between the same section pairs as in coarse alignment. Matches were excluded only by heu-

ristics. Modeling and rendering proceeded as described above, with spring constants 1/100th the constant for the between-section

springs. Rendered image intensities were linearly rescaled in each section based on the 5th and 95th percentile pixel values.

Image volume estimation
The imaged tissue has a trapezoidal shape in the sectioning plane. Tomeasure this shape, landmark points were placed in the aligned

images. We report cuboid dimensions rounded to the nearest multiple of 10 micrometers for both simplicity and comparison using

the trapezoid midsegment length. The original trapezoid has a short base length of 216.9 mm, long base length of 286.2 mm, and

height of 138.3 mm. The imaged data has 2176 sections, which measure 87.04 mm with a 40-nm slice thickness.

Voxel resolution
The original size of the EM volume in vivo was estimated by registering the EM image stack with an image stack from two-photon

microscopy. We applied polar decomposition to the linear transformation matrix A of the affine transformwe used for co-registration,

A = UP
where U is an orthogonal matrix specifying a rotation, and P is a
 symmetric matrix.

P =

2
4 0:921 �0:016 �0:005
�0:016 1:151 0:04
�0:005 0:04 0:923

3
5

It turns out that P is close to the identity matrix, with diagonal elements that are close to unity and off-diagonal elements that are

relatively small. We multiplied the nominal voxel resolution (3.58 nm3 3.58 nm3 40 nm) by the diagonal elements of P to estimate a

voxel size of 3.30 nm3 4.12 nm3 36.9 nm in vivo, corresponding to shrinkage and expansion in different directions. Overall volume

was roughly conserved (det P = 0.977). The nominal resolution is used for the analyses in this paper.

Image defect handling
Cracks, folds, and contaminants were manually annotated as binary masks on 2563-downsampled images, dilated by 2 px, then

inverted to form a defect mask. A tissue mask was created using non-zero pixels in the 2563-downsampled image, then eroded

by 2 px to exclude misalignments at the edge of the image. The image mask is the union of the tissue and defect masks, and it

was upsampled and applied during the final render to set pixels not included in the mask to zero. We created a segmentation

mask by excluding voxels that had been excluded by the image mask for three consecutive sections. The segmentation mask

was applied after affinity prediction to set affinities not included in the mask to zero.

Affinity prediction
Human experts used VAST (Berger et al., 2018) tomanually segmentmultiple subvolumes from the current dataset and a similar data-

set from mouse V1. Annotated voxels totaled 1.29 billion at full image resolution.

We trained a 3D convolutional network to generate three nearest neighbors (Turaga et al., 2010) and 13 long-range affinity maps

(Lee et al., 2017). Each long-range affinity map was constructed by comparing an equivalence relation (Jain, Sebastian Seung and
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Turaga, 2010) of pairs of voxels spanned by an ‘‘offset’’ edge (to preceding voxels at distances of 4, 8, 12, and 16 in x and y, and 2, 3,

and 4 in z). Only the nearest-neighbor affinities were used beyond inference time; long-range affinities were used solely for training.

The network architecture was modified from the Residual Symmetric U-Net (Lee et al., 2017). We trained on input patches of size

1283128320 px3 at 7.1637.16340 nm3 resolution. The prediction during training was bilinearly upsampled to full image resolution

before calculating the loss.

Training used synchronous gradient updates computed by four Nvidia Titan X Pascal GPUs, each with a different input patch. We

used the AMSGrad variant (Reddi et al., 2019) of the Adam optimizer (Kingma and Ba, 2014), with PyTorch’s default settings, except

step size parameter a = 0.001. We used the binary cross-entropy loss with ‘‘inverse margin’’ of 0.1 (Huang and Jain, 2013); patch-

wise class rebalancing (Lee et al., 2017) to compensate for the lower frequency of boundary voxels; training data augmentation,

including flip/rotate by 90�, brightness and contrast perturbations, warping distortions, misalignment/missing section simulation,

and out-of-focus simulation (Lee et al., 2017); and several new types of data augmentation, including simulation of lost sections

and co-occurrence of misalignment/missing/lost sections.

Distributed computation of affinity maps used chunkflow (Wu et al., 2021). The computation was done with images

at 7.1637.16340 nm3 resolution. The whole volume was divided into 1280312803140 chunks overlapping by 1283128310, and

each chunk was processed as a task. The tasks were injected into a queue (using Amazon Web Service Simple Queue Service).

For 2.5 days, 1000 workers (Google Cloud n1-highmem-4 with 4 vCPUs and 26 GB RAM, deployed in Docker image using Kuber-

netes) fetched and executed tasks from the queue as follows. The worker read the corresponding chunk from Google Cloud Storage

using CloudVolume (Silversmith and Tartavull, no date), and applied previously computed masks to black out regions with image de-

fects. The chunk was divided into 2563256320 patches with 50% overlap. Each patch was processed to yield an affinity map using

PZNet, a CPU inference framework (Popovych et al., 2020). The overlapping output patches were multiplied by a bump function,

which weights the voxels according to the distance from patch center, for smooth blending and then summed. The result was crop-

ped to 1024310243120 vx and then previously computed segmentation masks were applied (see Image defect handling above).

Initial oversegmentation
The affinity map was divided into 51435143130 chunks that overlapped by two voxels in each direction. For each chunk, we ran a

watershed and clustering algorithm (Zlateski and Seung, 2015), with special handling of chunk boundaries. If the descending flow of

watershed terminated prematurely at a chunk boundary, the voxels around the boundary were saved to disk so that domain con-

struction could be completed later on. Decisions about merging boundary domains were delayed, and information was written to

disk so decisions could be made later. After the chunks were individually processed, they were stitched together in a hierarchical

fashion. Each level of the hierarchy processed the previously delayed domain construction and clustering decisions in chunk inte-

riors. Upon reaching the top of the hierarchy, the chunk encompassed the entire volume, and all previously delayed decisions

were completed.

Mean affinity agglomeration
The watershed supervoxels and affinity map were divided into 51335133129 chunks that overlapped by one in each direction. Each

chunk was processed using mean affinity agglomeration (Lee et al., 2017; Funke et al., 2019). Agglomeration decisions at chunk

boundaries were delayed, and information about the decisions was saved to disk. After the chunks were individually processed,

they were combined in a hierarchical fashion similar to the watershed process.

Synaptic cleft detection
Synaptic clefts were annotated by human annotators within a 310.7 mm3 volume, which was split into 203.2 mm3 training, 53.7 mm3

validation, and 53.7 mm3 test sets. We trained a version of the Residual Symmetric U-Net (Lee et al., 2017) with three downsampling

levels instead of four, 90 feature maps at the third downsampling instead of 64, and ‘‘resize’’ upsampling rather than strided trans-

posed convolution. Images and labels were downsampled to 7.1637.16340-nm3 image resolution. To augment the training data,

input patches were transformed by (1) introducing misalignments of up to 17 pixels, (2) blacking out up to 5 sections, (3) blurring

up to 5 sections, (4) non-linear warping, (5) varying brightness and contrast, and (6) flipping and rotating by multiples of 90 degrees.

Training used PyTorch (Paszke et al., 2019) and the Adam optimizer (Kingma and Ba, 2014). The learning rate started from 10�3 and

was manually annealed three times (505,000 training updates), before adding 67.2 mm3 of extra training data for another 670,000 up-

dates. The extra training data focused on false-positive examples from the network’s predictions at 505,000 training updates, mostly

around blood vessels. The trained network achieved 93.0% precision and 90.9% recall in detecting clefts of the test set, using pa-

rameters selected to maximize F1.5 score (biasing toward recall). This network was applied to the entire dataset using the same

distributed inference setup as affinity map inference. Connected components of the thresholded network output that were at least

50 voxels at 7.1637.16340-nm3 resolution were retained as predicted synaptic clefts.

Synaptic partner assignment
Presynaptic and postsynaptic partners were annotated for 387 clefts, which were split into 196, 100, and 91 examples for training,

validation, and test sets. A network was trained to assign synaptic partners via a voxel association task (Turner et al., 2020).

Architecture and augmentations were the same as for the synaptic cleft detector. Test-set accuracywas 98.9%after 710,000 training
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iterations. Synaptic-cleft detection (above) produced connected components that represent cleft predictions. Subsequently, the

volume was separated into non-overlapping chunks of size 7.3337.33342.7 mm3 (10243102431068 voxels), and the partner

assignment network was applied to each cleft prediction in each chunk. Some cleft predictions crossed chunk boundaries, yet

the assignment network yielded a single pair of predicted partners for interior clefts. For a cleft that crossed at least one boundary,

we assigned it the synaptic partners inferred by the network within the chunk that contained the most voxels of that cleft.

The cleft predictions from the synaptic-cleft detection step were sometimes split into multiple predictions, often due to voxel

anisotropy or imperfect image alignment between slices. To ameliorate this problem, cleft predictions were merged after synaptic

partner assignment if they were inferred to connect the same synaptic partners and their centers-of-mass were within 1 mm. This

process resulted in 3,556,643 final cleft predictions.

We found a small number of synapses targeting the PyCs whose assignment was incorrect. These synapses were outside of the

manually proofread PyC-PyC subgraph, yet we implemented a heuristic to remove these errors before further analysis. We associ-

ated each PyC synapse to the closest mesh vertex for both its presynaptic and postsynaptic cells by euclidean distance. We then

mapped each PyC skeleton node to its closest mesh vertex in a similar manner. We then associated synapses to skeleton nodes by

distance across the mesh. Associating synapses and skeleton nodes by means of the mesh, rather than directly, helped to handle

cases where neurites passed near one another. Having associated synapses to skeleton nodes, we found the nine nearest neighbors

to each synapse in terms of distance between each synapse’s associated skeleton nodes. Synapses were selected for manual re-

view if a majority of its neighbors were of a different type than the original synapse (presynaptic vs. postsynaptic). This procedure

identified 1392 incorrect predictions out of a set of 894,528 (�0.16%).

Mitochondria detection and assignment
Mitochondriawere annotatedby humanannotatorswithin 1069.8mm3of image data,whichwas split into 462.3 mm3 training, 57.00mm3

validation, and 550.4mm3 test sets. Themitochondria labelswere erodedby two voxels in-plane in order to preventmerges fromorgan-

elle contacts. We trained a version of the Residual Symmetric U-Net (Lee et al., 2017) with two downsampling levels instead of four,

resize upsampling rather than strided transposed convolution, and [32, 40, 80] feature maps at each downsampling level. Images and

labels were downsampled to 7.1637.16340-nm3 image resolution. To augment the training data, input patches were transformed by

(1) introducing misalignments of up to 30 pixels, (2) blacking out up to three sections, (3) non-linear warping, (4) varying brightness and

contrast, and (5) flipping and rotating by multiples of 90 degrees. Training used PyTorch (Paszke et al., 2019) and the Adam optimizer

(Kingma and Ba, 2014). The learning rate started from 10�4 and was manually annealed twice (220,000 training updates). The trained

network achieved 93.6% precision and 92.7% recall in detecting mitochondria of the test set. These metrics were defined by overlap,

and errors for this networkwere dominated bymergers and splits of true segments rather than fully erroneous objects ormissing object

predictions. This network was applied to the entire dataset using the same distributed inference setup as for affinity map and synaptic

cleft inference. Connected components of the thresholded network output that were at least 300 voxels at 7.1637.16340 nm3

resolution were retained as predicted mitochondria. Each predicted mitochondrion was associated with the neuronal segmentation

object with which it overlapped most within the final proofread segmentation. We further meshed each mitochondrion segment for

visualization and further analysis (see below) using zmesh .

Cell-type assignment
Cells with somas inside the EM volumewere classified as excitatory pyramidal neurons, inhibitory interneurons, or non-neuronal cells

based on morphological and synaptic criteria. PyCs (416 in the volume) were identified by the presence of a spiny apical dendrite

radiating toward the pia, spiny basal dendrites extending laterally, and a basal axon that extended radially inward toward the white

matter. PyCs axons formed asymmetric synapses. Cells that did not fit this description but that were associated with synapses and

had dendrites or axons were classified as inhibitory interneurons (34).

Interneurons with identifiable axons inside the volume (20) were also assigned putative subtypes based on a combination of axonal

and dendritic morphology, as well as synaptic connectivity properties (Kawaguchi et al., 2006; Kubota, 2014; Kubota et al., 2016).

Interneurons without axons were not assigned types. Basket cells (4) were identified by virtue of their highly branched, local-

space-filling axonal arbors. They also had a larger number of primary dendrites, and at least 12% of their postsynaptic targets

were pyramidal cell somata. Chandelier cells (2) were identified based on the cartridge-like groups of synapses formed by their axons

and their targeting of almost exclusively axon initial segments of pyramidal cells. One Martinotti cell was identified by its apical axon

that targeted mostly dendritic shafts and spines of excitatory cells; consistent with (Kawaguchi et al., 2006), it had four primary den-

drites that were spiny. Bipolar cells represented a diverse group of neurons that consistently had two to three primary dendrites. The

dendrites were usually spiny and showed a vertical bias. Though it was rare for these cells to have an axon in the volume, in the few

cases where this occurred, there was also diversity, with some bipolar cells forming themajority of their synapses with inhibitory den-

drites and another targeting mostly excitatory cells. Finally, one neurogliaform cell was identified. This cell had an axon with boutons

that rarely formed synapses; consistent with (Kawaguchi et al., 2006) it also had a large number of primary dendrites and, as

described in the results section, possessed a very different pattern of synaptic inputs when compared with other cell types.

Non-neuronal cells were generally not associated with synapses and could be broadly classified by morphology as either vascu-

lature-related or glial cells. Vasculature-related cells (i.e., endothelial cells and pericytes), wrapped tightly around blood vessels in the

volume. Endothelial cells formed the walls of blood vessels, and the continuation of their somata into blood vessel walls was readily
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visible. The one pericyte we identified was wrapped around an endothelial cell, consistent with typical descriptions, as in (Brown

et al., 2019). Endothelial cells could also be distinguished from pericytes by their dark, electron-dense cytoplasm.

Glial cells were categorized based on their overall morphology and ultrastructural features. Protoplasmic (cortical) astrocytes had

angular-shaped processes with electron lucent cytoplasm that contained numerous glycogen granules. The processes of the cells

frequently filled interstices surrounding synapses and bore endfeet that covered the surface of blood vessels (Figure 1B inset).

Microglia had electron-dense cytoplasm; dark, irregularly shaped nuclei; and thick branches with spiky endings (Figure 1C inset).

Often, therewere large lipofuscin granules (residues of lysosomal digestion) in the cell body, whereas lysosomes and scattered phag-

olysosomes were present in branches. Microglia had long strands of endoplasmic reticulum (ER) in their granular cytoplasm and few

microtubules. Microglia are the smallest of neuroglial cells and differ from other types because of their hemopoietic origin (Ginhoux

and Prinz, 2015). Most of the microglia in this dataset were also perineuronal satellites and were located adjacent to their host

neurons with an astrocytic process between them (Peters et al., 1978). Perivascular microglia were in close association with blood

vessels, and some of the processes contacted surfaces of the endothelial cells forming the vessel. We grouped both of these micro-

glial types into a singlemicroglia group. OPCs resembledmicroglia because of their highly ramified branches and perinuclear satellite

position with neurons, but OPCs weremuch larger, with branches extending up to 50 mm from the cell soma (Peters, 2004); Figure 1D

inset) Their nuclei were pleomorphic, with dense heterochromatin patterning and undulating nuclear envelopes. The branches were

thick near the soma, diving into smaller processes with terminations that bore growth-cone-like structures and filopodia. The cyto-

skeleton of the cells was composed of numerous microtubules, and there were many organelles throughout. As the OPCs transi-

tioned to oligodendrocytes, morphological changes became evident (Trapp et al., 1997). The nucleus was elongated with a smooth

nuclear envelope, and the branches appeared thinner and less ramified. The branch terminations wrapped axons, and there was

evidence of myelin formation with uncompacted myelin present as well. Mature oligodendrocytes had a compact elongated

soma, containing scant cytoplasm. The branches were thin, smooth, and straight and contained microtubules. These branches

terminated in spiral membrane formations of compact myelin, wrapping up to 60 axons (Simons and Nave, 2015); Figure 1E inset).

Each cell with a soma in the volume received at least 2x coverage for identification, and the consensus is reported here.

Tissue quality assessment
Given the full image volume, segmentation, and cell-type assignment, the tissue was assessed for signs of damage from the entire

imaging process. We found no evidence of tissue damage from the two-photon imaging. Both gross and fine morphology of the

neurons look healthy. There is no apparent spine loss, beading of excitatory dendrites, or specific shrinkage of neurons or compart-

ments. The cytoplasm of the neurons also looks healthy and without widespread vacuoles. Different glial cell types are seen tiling the

cortical space and are not concentrated in any particular location that might require cleaning or support. Moreover, the microglia do

not appear to be in the activated state. In some chandelier cell axons, we can find very rare segments with swollen mitochondria, but

we think that this appearance is more likely related with some pruning taking place than any damage, given that the surrounding

neuropil looks impeccable, and so do other regions of the same axons.

PyC proofreading
Themean affinity graph of watershed supervoxels was stored in our PyChunkedGraph backend (Dorkenwald et al., 2020), which uses

an octree to provide spatial embedding for fast updates of the connected component sets from local edits. We modified the Neuro-

glancer frontend (Maitin-Shepard, 2019) to interface with this backend, so users could directly edit the agglomerations by adding and

removing edges in the supervoxel graph (merge and split agglomerations). Connected components of this graph are meshed in

chunks of supervoxels, and chunks affected by edits are updated in real-time, so users can always see a 3D representation of

the current segmentation. Using a keypoint for each object (e.g., soma centroid), objects are assigned the unique ID of the connected

component for the supervoxel containing that location. This process provides a means to update the object’s ID as edits are made.

Cell bodies in the EM volume were manually identified, and initial proofreading separated segments that merged multiple somas

together. PyCs were identified by morphological features, including density of dendritic spines, presence of apical and basal den-

drites, direction of main axon trunk, and cell body shape. A team of annotators used the meshes to detect errors in dendritic trunks

and axonal arbors, then to correct those errors with 50,000 manual edits in 1,044 person-hours. After these edits, PyCs were skel-

etonized, and both the branch and end points of these skeletons were identified automatically (with false negative rates of 1.7% and

1.4%, as estimated by annotators). Human annotators reviewed each point to ensure no merge errors and extend split errors where

possible (210 person-hours). Putative broken spines targeted by PyCs were identified by selecting objects that received one or two

synapses. Annotators reviewed, and attached these with 174 edits in 24 person-hours. Some difficult mergers came from small

axonal boutons merged to dendrites. We identified these cases by inspecting any predicted presynaptic site that resided within

7.5 mm of a postsynaptic site of the same cell, and corrected them with 50 person-hours.

PyC-PyC synapse proofreading
Synapses between PyCs were extracted from the automatically detected and assigned synapses. We reviewed these synapses

manually with 23 redundancy (1972 correct synapses out of 2433 putative synapses). Two predicted synapses out of these were

merged with other synaptic clefts. These cases were excluded from further analysis. One synapse was split into two predictions,

and these predictions were merged for analysis.
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Nucleus detection
Nuclei were segmented by a convolutional neural net predicting the likelihood of being part of a nucleus for each voxel (at the down-

sampled 57.28357.28340 nm3 voxel resolution), followed by a distributed connected components processmerging together voxels

with a likelihood above the threshold of 0.5.

The convolutional neural net was trained on image data and labels from two other similar EM datasets to be presented elsewhere.

The network architecture was a modified version of the Residual Symmetric U-Net (Lee et al., 2017). Specifically, in each residual

module, the first convolution used a kernel size of one and was effectively a simple linear layer; a total of three downsampling levels

were used instead of four, with [16, 32, 64, 128] feature maps at each downsampling level. An input patch size of 1603160332 was

used in training.

Each nucleus was manually checked to identify all cells with somas in the volume.

Skeletonization
We generated two separate sets of skeletons for the neuronal segmentation. The first set performed bulk processing of every object

in the volume. These skeletons are useful for measuring the lengths of arbitrary objects, their orientations, and topologies. The sec-

ond set was only produced for specific objects of interest (neurons with somas) and were intended to better handle two failure modes

of bulk skeletonization: discontinuous objects generated by proofreading across image defects and ‘‘self-contact’’ sites. This second

set of skeletons was used for the analyses within each vignette, though we release both sets for general use.

The bulk set of skeletons were produced using amodified form of TEASAR (Sato et al., 2000; Bitter et al.,2001) that operates on 3D

labeled images. The dataset was divided into a grid of 51335133513 cutouts at 28.64328.64340 nm3 resolution, with an overlap

margin of one voxel in each dimension. Conceptually, each connected component within each cutout was extracted as a binary

image using 26-connectivity, and we serially extracted a set of centerlines that form a tree. We selected the foreground root as

the farthest foreground voxel from an arbitrarily selected foreground voxel, except at somas, where the root is set as the foreground

voxel with maximum distance from the boundary.

We next applied the tree-structure extraction algorithm for accurate and robust skeletons (TEASAR) with the following modifica-

tions. (1) In the penalized distance from root voxel field (PDRF), we set M as max(DBF)1.01 (distance from boundary field), the

coefficient to 100,000, and lowered the exponent to four. (2) We normalized the distance from any voxel field (DAF) to one. (3) The

invalidated region used cubes instead of spheres. (4) We weighted the PDRF to zero along already traced paths, which results in bet-

ter branching behavior and faster tracing from target to root. (5) We also assigned priority tracing targets from the centers of the cross

sections of the shapes that touch the border.

We then trivially fused all the skeleton fragments for each neuron together at the overlapping voxel, removed detached compo-

nents smaller than 1 mm, removed loops introduced by the forest fusion, and joined nearby detached components if they were nearer

to each other than the DBF radius of the closest two vertices.Wemake our implementation available through our packages Kimimaro

(Silversmith and Bae) and Igneous (Silversmith and Tartavull). The procedure was set to stop tracing after 50 paths in a given cutout,

which tends to exclude glia.

To produce the second set of skeletons, we developed a skeletonization algorithm similar to TEASAR (Sato et al., 2000) that oper-

ates onmeshes. For each connected component of themesh graph, we identify a root and find the shortest path to the farthest node.

This procedure is repeated after invalidating all mesh nodes within the proximity of the visited nodes until no nodes are left to visit. We

make our implementation available through our package MeshParty (https://github.com/sdorkenw/MeshParty). The skeletonization

parameters were hand-tuned to largely ignore dendritic spines.

Given themesh vertices that participate in the skeleton, we estimated the neurite diameter at each location of the skeleton using ray

casting. Each ray begins at a location near a skeleton node (moved slightly opposite to its normal), extends in a direction roughly

opposite to the skeleton node normal (with some small noise), and travels until it crosses the mesh at another location.

Thesemesh skeletonswere further processed to improve our estimations of path length across cells. Each skeletonwas smoothed

by iteratively shifting vertices toward a local average computed using a vertex’s neighborhood. Given a vertex vi, the smoothing

neighborhood around vi consists of the set of vertices less than or equal to two-edges from vi (excluding vi itself). After computing

the local average from the neighborhood, each vertex ismoved to aweighted sumof its original location and its local average ðviÞwith

a blending parameter ðr 3 vi + ð1 � rÞ 3 viÞ.
We used r=0.1, and performed 20 iterations of this smoothing. The soma root node, branch point nodes, and leaf nodes were kept

fixed throughout this smoothing procedure.

Neuronal compartment labeling
Annotators tagged all branches leaving PyC somas and labeled them as one of the following categories: axon, basal dendrite, apical

dendrite, ambiguous dendrite, or ambiguous. We mapped these annotations to the closest skeleton nodes in the automatically

generated skeletons andmoved the label to the closest branch node if one was within 5 mm. Labels were next propagated to all skel-

eton nodes away from the soma. We then extended the soma label up to the closest of two options: (1) the first branch point labeled

as neurite or (2) the first node over 15 mm away from a manually placed soma center coordinate.

Imperfect skeletons introduced errors in the label propagation. We inspected and corrected the resulting compartment labels to

acquire a set of 351 cells possessing compartment labels without errors. Out of this set, we manually identified 182 that had their
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somas fully captured by the EM volume. Some PyCs with mild errors in their compartment labels were still included in specific

analyses if their errors had no bearing on their results.

To label compartments for inhibitory neurons, we manually placed labels near the axon initial segment for each cell if it had an

axon in the volume. The label was extended to the branch point of the skeleton closest to the cell body. As with pyramidal cells, the

somawas defined to include the region within 15 mmof its soma center label. Tomake neuronal meshes and skeletons continuous,

we added links to the meshes where proofreading spanned a gap in the segmentation using the MeshParty function

‘‘add_link_edges.’’

QUANTIFICATION AND STATISTICAL ANALYSIS

Neurite length calculation
The skeleton for each PyC and inhibitory neuron was split according to its compartment labels to generate individual sub-skeletons

for dendrites and for the axon. For each sub-skeleton, the node closest to the soma centroid was chosen as the source, and all other

leaf nodes (nodes with degree 1) were identified as targets. Each leaf node represented either the biological end of a neurite (e.g., the

end of a short dendrite in the volume) or the point at which a longer neurite left the volume. The shortest path length was computed

from the source to each target nodewith Dijsktra’s algorithm.We summarized this distribution between its 5th and 95th percentiles to

remove a few large outliers.

Synapse detection performance estimation
To estimate the precision of synapse detection for each class, we defined a ‘‘likely subset’’ of synapses belonging to that class based

on a heuristic, and scored synapses that were of the correct type. For example, for axo-axonic synapses, we extracted the set of

synapses received by PyC’s within 10 mm of the axon and soma compartment label boundary. In some cases (mostly axo-somatic),

a synaptic cleft would be split into two predictions by an image defect or weak prediction. In those cases, we counted that prediction

as 50% true positive and 50% false positive.

To estimate the recall for each class, we randomly sampled a set of cells, manually identified a set of synapses for those cells by

traversing their neurites or target domains, and compared themanually identified set to the predicted clefts. Each precision and recall

value was estimated with roughly 50 synapses each.

PyC dendritic segment analysis
We computed the path length distance along the computational skeleton to the nearest node with a ‘‘soma’’ label of a given cell. We

used a similar computation to measure the distance to the closest leaf node of the skeleton. We then created dendritic segments by

separating the skeleton at 10 mm distance intervals from the soma. We also introduced additional separations at boundaries of the

compartment labels, such that each segment only contained nodes with one label. Dendritic segments within 5 mm of a leaf node

were excluded from analysis to mitigate reconstruction or skeletonization noise near the reconstruction boundaries. The triangle

mesh for a given dendritic segment was estimated by grouping the mesh vertices that had the smallest euclidean distance to

some skeleton node within the segment.

We computed several features for each dendritic segment. The segment’s surface area and volume were computed from the den-

dritic segment mesh. The median diameter measurement for each segment used the median diameter value estimated across skel-

eton nodes within the segment (see Skeletonization above). The synapse count for each segment was computed as the number of

predicted postsynaptic terminals that had the smallest euclidean distance to some node in the skeleton of the dendritic segment.

Mitochondrion analysis
We associated each mitochondrion mesh to the set of skeleton nodes that were closest to any mesh vertex of that object within the

351 PyCs possessing compartment labels without errors. We then assigned a compartment label to each predicted mitochondrion

using the skeleton node labels by taking a majority vote over the skeleton nodes associated with that mitochondrion. Each skeleton

node’s vote was weighted by the number of mesh vertices associated with that node. Mitochondria with an ‘‘ambiguous dendrite’’ or

‘‘ambiguous’’ label were removed from further analysis. Mitochondria without a soma label that crossed the soma/neurite boundary

were also removed, as well as mitochondria within 10 mm of a skeleton leaf node.

The mitochondrial volume for each dendritic segment was computed by dividing the volume of each mitochondrion prediction be-

tween the segments to which some mesh vertex was closest. Each segment was assigned volume from a mitochondrion prediction

proportional to the number of the mitochondrion’s mesh vertices assigned to skeleton nodes within that segment.

The mitochondrial index within a segment of neurite was computed by first measuring the path length within this segment covered

by each present mitochondrion, and then normalizing the sum of these covered lengths by the amount of neurite path length within

the section. Themitochondrial volume per unit length was computed by dividing themitochondrial volume for a dendritic segment by

the dendritic path length for that segment.

When measuring mitochondrion length, we took the set of skeleton nodes associated with each individual object, and computed

the path length of all edges connecting those nodes together.
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When correlating measurements of mitochondrial density, synapse density, and dendritic diameter, we calculated the two-tailed

p-value for each Pearson correlation as implemented in Scipy (Virtanen et al., 2020): the null distribution of the r-value is a Beta dis-

tribution over [-1, 1] with shape parameters a =b =n/2-1.

PyC and interneuron cell input analysis
Separately from the dendritic segment analysis above, synapses were associated with the mesh vertex closest to the location of the

synaptic cleft in the synapse detection, and synapses beyond 200 nm from amesh vertex were omitted. Mesh vertices and their syn-

apses were bidirectionally mapped to the closest skeleton vertex as measured along the surface of the mesh.

Similar dendritic segments were formed to the above analysis, except that they introduced separations into the skeleton in incre-

ments of 15 mm instead of 10 mm. For each distance increment (e.g., 15-30 mm), synapses, path lengths and surface areas were

pooled across separate segments and averaged to create an estimate of linear and areal synapse density per cell at that distance.

Statistical visualization was performed in Python using Seaborn (Waskom, 2021). Error intervals for line plots were estimated by

bootstrap resampling the density values for cells within each distance bin and cell class (1000 bootstrap samples, as implemented

in Seaborn). For violin plots, synapses were first log10-transformed and then plotted with a kernel bandwidth of 0.1.

Random network models
To identify nonrandom connectivity motifs, we compared the simple subgraph of PyCs (removing self-loops andmultiple edges) with

different random graphs as null models.

When studying two-neuron motifs, we first used a directed Erd}os-Rényi (ER) model (Gilbert, 1959), Gðn;pÞ, as a baseline, where a

directed edge between any two distinct vertices is uniformly drawn at randomwith probability p. The expected number of edges of a

directed ER model is m = nðn � 1Þp. To match the data, for example, the subgraph with a 100 mm axon length threshold, we set

n=111, m=659, and p = m=½nðn� 1Þ�z0:0540. We directly calculated the expected number of different two-neuron motifs in this

ER model.

We also used a directed configuration model, Gðn; d +�!; d��!Þ, which generates rewired graphs preserving the original degree dis-

tribution uniformly at random, where d +�! and d��! are predefined in- and out-degree sequences of the network. We sampled 1,000

random networks uniformly from a set of graphs with the same degree sequences as our PyCs subgraph by applying the switch-and-

hold algorithm (Figure 6A; (Artzy-Randrup and Stone, 2005), where we randomly select two edges in each iteration and swap their

target endpoints if that does not introduce self-loops or multiple edges (switch), or otherwise keep them unchanged (hold). In the

original paper, the switch step is implemented by selecting four vertices at random, while our implementation selects two edges

at random, because that is more efficient on a sparse network. In general, the Markov chain for our sampling procedure is reducible,

so samples are drawn from only one ergodic component of the set of all simple graphs with the same degree sequence (Carstens and

Horadam, 2016). However, all ergodic components share the same motif frequencies, so the lack of ergodicity has no consequence

for our analysis (Berger and Müller-Hannemann, 2010). A more complex Markov-chain sampling procedure with true ergodicity is

known (Roberts and Coolen, 2012), but as mentioned above would yield the same motif frequencies. To generate one sample,

we run the algorithm for 10,000 iterations from the previously sampled network, with an average holding rate of 19.2% for the largest

PyC subgraph.

When studying three-neuron motifs, besides the vanilla ER model and configuration model as described above, we also used

generalized ER (Figure 6B) and configuration models (Figure S6A) to preserve two-neuron motif statistics. In the generalized ER

model, the probability of a unidirectional edge is 4.92310–2, and the probability of a bidirectional edge is 4.75310–3. We directly

calculated the expected number of different three-neuron motifs in the generalized ER model.

We also modified the switch-and-hold algorithm such that the number of bidirectional edges for each neuron is preserved (gCFG,

Figure S6A), or the total number of bidirectional edges is preserved (gCFG (bi-edge), Table S2). Sampling from the first generalized

configuration model, we constrain the switch operation to swap two bidirectional connections or two unidirectional connections.

Sampling from the second generalized configuration model (bi-edge) involves two phases: mixing and hitting. For each sample,

we run the switch-and-hold for 10,000 iterations to ensure the convergence to stationary distribution (mixing), then continue for a

few iterations until it reaches a graph with the same number of bidirectional edges as the observed network (hitting). This generalized

configuration model efficiently samples graphs with unchanged degree sequences and the statistics of two-neuron motifs without

biases. It has the same holding rate and running time as ordinary switch-and-hold, and only increases the required number of iter-

ations by a small constantQ(log(1/(1-p)), where p is the percentage of graphswith the same frequency of 2-neuronmotifs in the entire

space. In the experiment, we sampled 1,000 random networks, with an average holding rate of 19.2% for the largest PyC subgraph.

The average number of iterations in the hitting phase is 3,736.78, which only increases the total number of iterations by 37.4%.

Because proximity could be a primary predictor of connection probability, we additionally compared a random graphmodel where

the connection probability between a pair of neurons is a function of pairwise soma distance. In such a proximity-based model, the

connection probability between two neurons i and j at a distance dij is estimated from all pairs of neuronswith soma distance in the bin

[dij-10 mm, dij+10 mm] (Figure S6F). I.e.,

pðdijÞ = # of connected cell pairs with soma distance ˛½dij � 10mm; dij + 10mm�
# of all cell pairs with soma distance ˛½dij � 10mm; dij + 10mm�
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Edges in the proximity model are drawn independently with probability p(dij), where pairwise distance dij is given by the data.

Random network model comparison
We applied the minimum description length principle to determine which random graph model provides the best description of the

observed neural network. The description length of a model consists of two parts,X
= L+S
where L is the number of nats required to specify the observation
 when the model is known, and S is the number of nats required to

encode the model.

The MDL principle advocates that the model with a smaller S is better (Rissanen, 1978). From an information perspective, the

description length depicts the trade-off between model accuracy and complexity. One can add more constraints to improve the

model’s accuracy, which increases L; in the meantime, it increases the complexity of the model, which penalizes the overall descrip-

tion length by increasing S. The MDL principle prefers the simplest model that can explain the observation.

From a Bayesian perspective,

e�
P

= e�L,e�S
where e-L can be regarded as the likelihood of the observation give
n themodel, e-S can be regarded as the prior of themodel, and e-S

can be regarded as the posterior to be maximized. This yields an equivalence between MDL and Bayesian inference.

Given n nodes and m edges, the description length of the ER model is given byX
ER

= logð# of graphs given n andmÞ= log

�
nðn� 1Þ

m

�

and the description length of the generalized ER model is given byX
gER

= logð# of graphs given n; m and mbiÞ + logð# of possiblembi given n; mÞ

= log

2
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0
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2
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1
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�
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where mbi indicates the number of bidirectional edges. The seco
nd term assumes a uniform prior of the number of bi-directional

edges, which may not be a property of the biological neural network. However, it provides an upper bound for the number of nats

of information in the number of bidirectional edges if further compression is possible. The first term alone is a lower bound for

SgER. In the subgraph with a 100 mm axon length threshold, n=111, m=659, and mbi=29. We have SER= 2560.56 nats, and

2554.64 nats < SgER % 2560.44 nats. The above calculation is based on a version of ER model that holds the number of edges

exactly. If we use an ER model where the expected number of edges is fixed (Gilbert, 1959), the description length is slightly greater

(SGilbert= 2564.69, and 2561.31 < SGilbert (generalized) % 2567.11).

Similarly, the description length of the configuration model is given byX
CFG

= log
�
# of graphs given n; m; d +�! and d��!�+ logð# of possible degree sequences given n;mÞ

The pairings model in (Greenhill et al., 2006) suggests the following upper bound for the total number of directed graphs given de-

gree sequences.

log
�
# of graphs given n; m; d +�! and d��!�% logðm!Þ �

Xn
i = 1

log
�
d +
i ! d

�
i !
�

Also, we can bound the number of degree sequences by partitioning m into the sum of n non-negative numbers.

logð# of possible degree sequences given n;mÞ%2 log

�
n+m� 1
n� 1

�

The log number of possible degree sequences is an upper bound for the number of nats of information in degree sequence if the

degree sequence distribution is non-uniform. Combining the above two upper bounds yields SCFG % 2508.73 nats. Thus, we have

SCFG < SgER< SER.
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Whole-cell degree and connection density
Using the 334-node PyC graph, we counted the number of unique presynaptic partners and postsynaptic partners and named them

as in-degree and out-degree, respectively. To compensate for the truncated effect due to the limited size of the volume, we normal-

ized these quantities by axon length for out-degree and by dendrite length for in-degree. These normalized quantities are named

‘‘connection density.’’ We also looked at all incoming synapses on dendrites not restricted to the PyC graph (perisomatic synapses

within 15 mm from the human-labeled soma centroid are neglected), and named this quantity ‘‘linear synapse density.’’

Direction and orientation selectivity
For each calcium-imaged cell, we defined a response matrix Rtd as the sum of inferred spike probability, which was thresholded with

three standard deviations of spike probabilities of the cells for each scan above zero, triggered by the stimulus in trial t to stimulus

direction qd. The T3D matrix included response amplitudes in T=30 trials and D=16 directions. The direction tuning function was

computed by taking the average of responses over 30 trials for each direction.

Rd =
1

T

XT
t =0

Rtd

From the direction tuning function Rd, we computed a global orientation selectivity index (gOSI) and global direction selectivity in-

dex (gDSI) as below (Ringach et al., 2002).
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4
d
�
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�
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An orientation-tuned cell was defined as one with statistically significant gOSI, evaluated using a permutation test (Ecker et al.,

2014; Baden et al., 2016). A direction-tuned cell was defined as one with statistically significant gDSI but not gOSI. Statistical signif-

icance was determined by p<0.001, where the p-value indicates the fraction of 10,000 permutations with gDSI/gOSI greater than that

of the observed data. The permutation test effectively excludes cells that have a large gDSI or gOSI merely by chance, which can

happen due to trial-to-trial variability. Restriction by statistical significance is different from imposing a simple threshold on gDSI

or gOSI (Baden et al., 2016).

Preferred orientation
To compute the preferred orientation of a cell, we first averaged the responses of each direction with its null direction to produce an

orientation tuning function from a direction tuning function. The orientation tuning function was modeled with circular Gaussian func-

tion. The preferred orientation was determined as an angle from 0� to 180� that has the maximum value of the Gaussian fit.

Mean response
From the response matrix, a cell’s mean response was computed by taking the average of responses in all 30 trials of the preferred

orientation stimuli, preferred direction, and opposite direction (180� from the preferred direction). For significantly direction-tuned

cells (p<0.001 for gDSI), the average of responseswere computed only for the preferred direction. The Pearson correlation coefficient

was calculated to measure the correlation between the intermittency and the in-connection density using the Scipy package (Virta-

nen et al., 2020). To test for significance, the two-tailed p-value was calculated; a threshold of 0.05 was used to reject the null hy-

pothesis, where the null distribution of the r-value is a Beta distribution over [-1, 1] with shape parameters a =b =n/2-1.

We fit our linear model combining responses that surpass the intermittency threshold and in-connection density using ordinary

least squares as implemented in Statsmodels (Seabold and Perktold, 2010).

Intermittency
We defined a binary-valued function by thresholding the activity after temporal deconvolution (S), where the threshold (l) was set at

three standard deviations of spike greater than the baseline. The standard deviation was determined from the standard deviations of

spike probabilities of the cells in each scan. For example, the value of this function for a directional stimulus with direction d and trial t

is defined as

fdðtÞ =


1; maxðSðd; tÞÞRl
0; maxðSðd; tÞÞ<l

In other words, we define the response of direction d at trial t ‘‘active’’ (fd(t) = 1) when there exists any activity over the threshold

during that period.

A cell’s intermittency is an inverse measure of how consistently a cell responds to preferred stimuli. Here, preferred stimuli are

preferred direction and the opposite direction except for significantly direction-tuned cells, where preferred stimulus is only the

preferred direction. Therefore, the intermittency value was defined as
e14 Cell 185, 1082–1100.e1–e15, March 17, 2022
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where Dp is a set of directions in preferred stimuli, and T is the n
umber of trials for each stimulus. To test for significance, we per-

formed an analogous permutation test for mean response.

Location-restricted permutation test
To test that significance of correlation is not due to spatial organization, we performed a permutation test with spatial restriction. We

divided the volume into small cubes by dividing the x- and z-dimensions into two regions and y-dimension (cortical depth) into four

regions. Axis along the cortical depth was divided into finer regions becausemore distinct spatial organization existed along that axis

(Figure S7F), while other axes had less bias. For each cube, we located all the cells that have soma centers within the cube and

shuffled the in-connection density values among these cells. Then we computed the correlation coefficient for the randomized dis-

tributions. Statistical significance was determined by p<0.05, where the p-value indicates the fraction of 10,000 permutations with

correlation coefficient stronger than that of the observed data. We performed this permutation test for mean response and

intermittency.

Statistical reporting
We report p-values greater than 1310-4 as a rounded value, those under 1310-50 as approximately 0, and those in between 1310-50

and 1310-4 as less than the value rounded up to two significant figures.We report p-values for permutation tests as the percentage of

permutations whose test statistic value is more extreme than the observed value.

Figure rendering information
The following segment IDs were removed from the insets in Figure 1A to improve their visual clarity: 648518346349526102,

648518346349525545, 648518346349531742, 648518346349508442.

ADDITIONAL RESOURCES

Interactive visualization of the reconstruction, a list of related publications, information about the MICrONS project, and further data

releases are made available at the MICrONS Explorer website (microns-explorer.org).
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Figure S1. Example inhibitory neurons and the reconstructed vasculature, related to Figure 1

(A) Basket (green) to PyC (blue) axosomatic synapse. Insets: left: 3D view of contact between axonal bouton and PyC soma (box); right: single-section EM view of

the synapse.

(B) Chandelier (pink) to PyC (blue) axoaxonic synapse cartridge. Insets: left: 2 synapses in series (box); right: EM view.

(C) Martinotti (cyan) to spiny dendrite (purple) axodendritic synapse. Insets: left: direct contact between bouton (asterisk) and dendritic shaft; right: EM view.

(D) Neurogliaform cell.

(E) Bipolar cell with basal axon (arrowhead).

(F) Vasculature reconstruction with merge errors.

Black dots, (A–C): predicted presynaptic terminals of the inhibitory neuron.

Scale bars: 20 mm in (A–E), shown in (A) only, (A–C) insets: 2 mm (left) and 300 nm (right); 25 mm in (F).
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Figure S2. Additional mitochondria and synapse density analysis for L2/3 PyCs, related to Figure 4

(A) Comparison of MCI (Vincent et al., 2019) by neuronal compartment (naxonal = 11,484, nsomatic = 90,193, napical = 18,608, nbasal = 53,318; one-tailed Mann-

Whitney U tests; *p < 1 3 10�28, **p z 0). Boxes indicate interquartile ranges, and whiskers indicate the 5th and 95th percentiles.

(B–D) Single mitochondrion path length versus distance from soma for axons (B), basal dendrites (C), and the proximal apical dendrites (D). Black dots show the

median value, red dots show the mean value, and shaded region shows the interquartile range.

(E) The number of analyzed basal dendrite segments at each distance from the soma. The number of cells that contain analyzed segments at each distance is

indicated in red.

(F andG)Mitochondrial volume density (F) and areal synapse density normalized by approximate dendritic cylinder surface area (G) at different distances from the

soma. Dots and shaded regions indicate the mean +/� standard deviation values at each distance bin. n = 29,591.

(H) Percentage change in the mean of basal mitochondria density measurements relative to the value 65 mm away from the soma. Red: mitochondrial volume per

unit length. Blue: mitochondrial path length per unit length. Black: mitochondrial volume as a fraction of dendritic volume. Error bars indicate the standard error of

the mean.

(I) Percentage change in the mean of basal dendrite measurements relative to the value 65 mm away from the soma. Red points: areal synapse density. Blue

points: linear synapse density. Black points: cylinder areal synapse density. Magenta diamond: median diameter. Error bars indicate the standard error of

the mean.

(J) Mitochondrial volume per unit length is correlated with linear synapse density over 60 mm away from the soma (r = 0.37, n = 9,198, p < 1 3 10�300).

(K) Median dendritic shaft diameter is correlated with linear synapse density over 60 mm away from the soma (r = 0.402, n = 9,198, p z 0).

(L) Mitochondrial volume per unit length is correlated with dendritic diameter over 60 mm away from the soma (r = 0.514, n = 9,198, p z 0).

(M) Mitochondrial volume per unit length is only weakly correlated with linear synapse density over 60 mm away from the soma, after removing variance explained

by dendritic diameter (r = 0.181, n = 9,198, p < 1 3 10�67).

(N) Detailed view of a single apical mitochondrion within a pyramidal cell from a deeper cortical layer. Inset shows the morphology of the captured dendrite (gray)

and mitochondria (red).

(O–U) Proximal versus distal measurements for each analyzed cell with distal arbor (n = 343), displaying mitochondrial volume per unit length (O), mitochondrial

path length per unit length (P), volume mitochondrial density (Q), median dendrite diameter (R), linear synapse density (S), areal synapse density (T), and cylinder

synapse density (U). Proximal values are averaged across distances <40 mmaway from the soma, and distal values are averaged across distancesR60 mmaway.

Scale bars: (N) 5 mm in (N), 10 mm (inset). (O–U) Line: linear fit, shade: 80% prediction interval.
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Figure S3. Input synapse density for excitatory and inhibitory cells, related to Figure 5

(A) Path length captured by the reconstruction volume for each neuron class as a function of distance from the soma.

(B) Linear synapse density for each cell grouped in Figure 5.

(C) Neurite surface area for each neuron class.

(D) Areal synapse density for each cell grouped in Figure 5.

(E) Synapse count for each neuron class.

(F) Median synapse size for each cell grouped in Figure 5.

(G) Median synapse size grouped by neuron class.

(H) Areal synapse density for basket and chandelier groups, as well as unclassified cells suspected to be within these classes.

(A, C, E, and G) Lines: mean value across cells, shaded regions: 95% bootstrap confidence intervals (1,000 samples). (C–H) Dots: value at the soma.
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Figure S4. Predicting motif frequencies for PyC subgraphs with different axon length thresholds (0 and 300 mm), related to Figure 6, which is

based on a subgraph consisting of PyCs with axon lengths R100 mm

(A) Spatial location of nodes in PyC subgraphs with axon length threshold = 0 mm. Red: 227 PyCs included in the subgraph. Gray: PyCs excluded due to axon

lengths shorter than threshold.

(B) Similar to (A) for axon length threshold = 100 mm. The resulting subgraph contains 111 neurons.

(C) Similar to (A) for axon length threshold = 300 mm. The resulting subgraph contains 100 neurons.

(D) In- and out-degree distributions in an observed network with threshold = 0 mmand the expected distribution of in- and out-degrees in a regular ERmodel (edge

probability = 0.0245). Red: observed data; black, dashed: ER model. Histograms are calculated with 8 bins of the same widths on a log scale. The expected

degree distributions are estimated from 100 samples from the ER model.

(E) Similar to (D) for axon length threshold = 300 mm. ER edge probability = 0.0628.

(F) 2-cell motif frequencies in the observed network with threshold = 0 mm and a configuration (CFG) model relative to the ER model. The red crosses indicate

observed counts. The shaded region shows the smoothed distribution of motif counts sampled from the configuration model. White points indicate medians,

solid vertical lines indicate quartiles, and dashed lines indicate the 95% confidence interval for 1,000 samples.

(G) Similar to (F) for axon length threshold = 300 mm.

(H) 3-cell motif frequencies in an observed network with threshold = 0 mm and the CFG model relative to a generalized ER model. The red crosses indicate

observed counts. The violin plot shows the smoothed distribution of the motif counts sampled from the CFGmodel. White points indicate medians, solid vertical

lines indicate quartiles, and dashed lines indicate the 95% confidence interval for 1,000 samples.

(I) Similar to (H) for axon length threshold = 300 mm.

(J) The common neighbor rule for the graph with threshold = 0 mm. Error bars indicate standard deviation of 100 samples. (red: observed data, R2 = 0.95, p = 1.93

10�6; gray: configuration model, R2 z 1.00, p = 1.7 3 10�13; z-test, dashed line: generalized ER model).

(K) Similar to (J) for axon length threshold = 300 mm. Red: R2 = 0.88, p = 6.3 3 10�5; gray: R2 z 1.00, p = 5.8 3 10�11; z-test.
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Figure S5. Predicting motif frequencies for all 363 PyCs, related to Figure 6

(A) In- and out-degree distributions of all PyCs and the expected distribution of in- and out-degrees in a regular ER model (edge probability = 0.0113). Red:

observed data; black, dashed: ER model. Histograms are calculated with 8 bins of the same widths on a log scale. The expected degree distributions are

estimated from 100 samples from the ER model.

(B) 2-cell motif frequencies in the full network and a CFG model relative to the ER model. The shaded region shows the smoothed distribution of motif counts

sampled from the CFG model. White points indicate medians, solid vertical lines indicate quartiles, and dashed lines indicate the 95% confidence interval for

1,000 samples.

(C) Comparison of 2-cell motif counts in the ER and CFGmodels. Circles indicate mean counts sampled from the CFGmodel, and triangles indicate mean counts

sampled from the ER model.

(D) 3-cell motif frequencies in the full network and the CFGmodel relative to a generalized ERmodel. The violin plot shows the smoothed distribution of the motif

counts sampled from the CFGmodel. White points indicate medians, solid vertical lines indicate quartiles, and dashed lines indicate the 95% confidence interval

for 1,000 samples.

(E) Comparison of 3-cell motif counts in the generalized ER (gER) and CFGmodels. Circles and triangles indicatemean counts sampled from the CFG and the gER

models, respectively.

(F) The common neighbor rule is significantly more prominent in the pyramidal cell network than in generalized ER random networks. Gray: CFG model; black,

dashed: generalized ER random networks; red: observed data. (red slope: R2 = 0.86, p = 9.5 3 10�5; gray: R2 = 0.99, p = 2.4 3 10�10; z-test) Lines indicate

standard deviation of 100 samples.
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Figure S6. Comparison of the (generalized) Erd}os–Rényi model, (generalized) configuration model, and a proximity-based model for pre-

dicting 3-cell motifs, related to Figure 6

(A) Illustration of sampling from a generalized CFG model, where the number of bidirectional edges for each neuron in the original network is preserved.

(B) Comparison of 3-cell motif counts in the ER and generalized ER (gER) models for the subgraph with the axon length threshold = 100 mm. Circles and stars

indicate mean counts sampled from the ER and gER models, respectively.

(C) Similar to (B), circles and stars indicate mean counts sampled from the CFG model and the generalized CFG model, respectively.

(D) Similar to (C), circles and stars indicate mean counts sampled from the gER and generalized CFG models, respectively.

(E) Illustration of a counter-example where the CFG model fits 2-cell motifs worse than the ER model. Networks i–vii share the same degree sequence, and the

CFG model underpredicts the number of bidirectionally connected pairs of cells for networks i–iv.

(F) Connection probability as a function of soma distance. The red curve indicates connection probability at distance x, which is estimated from pairs of neurons

with soma-to-soma distances in the range [x�10 mm, x+10 mm]. The gray curve indicates cumulative connection probability of all pairs of neurons with soma-to-

soma distances %x. The shaded area indicates the 95% confidence interval from a normal distribution approximation to the standard error.

(G) 3-cell motif frequencies in the observed network (OBS) and the proximity-based model (PM) relative to a gER model. The violin plot shows the smoothed

distribution of the motif counts sampled from the CFG model. White points indicate medians, and lines indicate the 95% confidence interval for 1,000 samples.

(H) The common neighbor rule does not hold in the proximity-based model. Gray: proximity-based model; black, dashed: generalized ER random networks; red:

observed data. (red slope: R2 = 0.88, p = 6.1 3 10�5; gray: R2 = 0.20, p = 1.9 3 10�1; z-test) Error bars indicate standard deviation of 100 samples.
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Figure S7. Co-registration and volume truncation in degree-visual response analysis, related to Figure 7

(A) 2-p calcium recording image plane co-registration for all recordings (extension of Figure 7A).

(B) Qualitative evaluation of co-registration. Left: segmentation overlaid on top of example 2-p slice, right: convex hull of PyCs’ somas in the example slice

overlaid on top of 2-p slice.

(C) Total axon length versus out-degree of PyCs (n = 351).

(D) Total dendrite length versus in-degree of PyCs (n = 351).

(E) In-connection density distribution (n = 351).

(F) In-connection density distribution of significantly tuned cells along x, y, and z dimensions (n = 38).

(G) Spatially restricted randomization cartoon.

(H) Number of cells in the cube for spatially restricted randomization (n = 38).

(B) Scale bar: 50 mm. (C, D, and F) Shade: 80% prediction interval.
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