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Abstract. Electron microscopy (EM) enables the reconstruction of neu-
ral circuits at the level of individual synapses, which has been transforma-
tive for scientific discoveries. However, due to the complex morphology,
an accurate reconstruction of cortical axons has become a major chal-
lenge. Worse still, there is no publicly available large-scale EM dataset
from the cortex that provides dense ground truth segmentation for axons,
making it difficult to develop and evaluate large-scale axon reconstruc-
tion methods. To address this, we introduce the AxonEM dataset, which
consists of two 30 × 30 × 30 µm3 EM image volumes from the human
and mouse cortex, respectively. We thoroughly proofread over 18,000
axon instances to provide dense 3D axon instance segmentation, enabling
large-scale evaluation of axon reconstruction methods. In addition, we
densely annotate nine ground truth subvolumes for training, per each
data volume. With this, we reproduce two published state-of-the-art
methods and provide their evaluation results as a baseline. We pub-
licly release our code and data at https://connectomics-bazaar.github.io/
proj/AxonEM/index.html to foster the development of advanced meth-
ods.
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1 Introduction

With recent technical advances in high-throughput 3D electron microscopy
(EM) [16], it has become feasible to map out neural circuits at the level of indi-
vidual synapses in large brain volumes [10,29,30]. Reconstruction of a wiring
diagram of the whole-brain, or a connectome, has seen successes in inverte-
brates, such as the complete connectome of the roundworm C. elegans [35] and
the partial connectome of the fruit fly D. melanogaster [9,29]. Mapping the
connectome of a whole mouse brain is currently being considered as the next
transformative challenge in the field of connectomics [3]. Detailed study of large-
scale connectomes may lead to new scientific discoveries with potential clinical
implications [3].

At present, automated reconstruction of neural circuits from the cortex faces
a significant obstacle: the axon instance segmentation. In the cortex, axons are
the most abundant type of neurites by path length [24], with the smallest diame-
ter of ∼50 nm in the case of mouse cortical axons [14]. Given their small caliber,
complex morphology, and densely packed nature (Fig. 1), axons are prone to
reconstruction errors especially when challenged by various image defects such
as imperfect staining and image misalignment [17].

Fig. 1. Example axons in our AxonEM dataset. (a) Due to the unclear cell boundaries
resulted from imperfect staining, an axon is falsely merged with an abutting dendrite.
(b) Axons often form a tight bundle. Due to the similar shape and small size of their
cross-sections, axons in such a tight bundle may be prone to errors, especially in the
presence of image misalignment.

To the best of our knowledge, there is no existing EM reconstruction from
any cortical region that provides densely and fully proofread axon instances.
Previously the largest work was carried out by Motta et al. [24], in which the
team spent ∼4,000 human hours in semi-automated proofreading of the initial
automated segmentation. However, their finalized reconstruction for axons suf-
fered from a relatively high error rate [24],1 making their reconstruction less
suitable for developing and evaluating large-scale axon reconstruction methods.

To foster new research to address the challenge, we have created a large-scale
benchmark for 3D axon instance segmentation, AxonEM, which is about 250×
1 12.8 errors per 1 mm of path length, estimated with 10 randomly chosen axons [24].
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larger than the prior art [2] (Fig. 2). AxonEM consists of two 30 × 30 × 30 µm3

EM image volumes acquired from the mouse and human cortex, respectively.
Both image volumes span, at least partially, layer 2 of the cortex, thus allowing
for comparative studies on brain structures across different mammalian species.

Contributions. First, we thoroughly proofread over 18,000 axon instances to
provide the largest ever ground truth for cortical axons, which enables large-scale
evaluation. Second, we densely annotate a handful of dataset subvolumes, which
can be used to train a broad class of methods for axon reconstruction and allow
for an objective comparison. Third, we publicly release our data and baseline
code to reproduce two published state-of-the-art neuron instance segmentation
methods [15,18], thereby calling for innovative methods to tackle the challenge.

Fig. 2. Comparison of EM datasets with proofread axon segmentation. (Left) Distri-
bution of axon instance length. (Right) 3D rendering of the neurons with somas in
our AxonEM dataset and the dense segmentation of the SNEMI3D dataset [2]. For
AxonEM-H, two large glial cells (not rendered) occupy the space between the blue and
pink neurons, resulting in much fewer long axons compared to AxonEM-M.

1.1 Related Works

Axon Segmentation. In non-cortical regions, myelinated axons are thick and
easier to segment. Traditional image processing algorithms have been proposed,
including thresholding and morphological operations [8], axon shape-based mor-
phological discrimination [23], watershed [33], region growing [39], active con-
tours without [4] and with discriminant analysis [36]. More recently, deep learn-
ing methods have also been used to segment this type of axons [22,25,37].

However, unmyelinated axons in the cortex have been a significant source of
reconstruction errors, because their thin and intricate branches are vulnerable
to various types of image defects [17]. Motta et al. [24] took a semi-automated
reconstruction approach to densely segment axons in a volume of ∼500,000 µm3

from the mouse cortex. However, their estimate of remaining axon reconstruction
errors was relatively high [24].
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Neuron Segmentation in EM. There are two mainstream approaches to
instance segmentation from 3D EM image volumes. One approach trains convo-
lutional neural networks (CNNs) to predict an intermediate representation for
neuronal boundaries [7,27,38] or inter-voxel affinities [12,18,31], which are then
often conservatively oversegmented with watershed [40]. For further improve-
ment, adjacent segments are agglomerated by a similarity measure [12,18,26],
or with graph partitioning [5]. In the other approach, CNNs are trained to recur-
sively extend a segmentation mask for a single object of interest [15,21]. Recently,
recurrent neural networks (RNNs) have also been employed to extend multiple
objects simultaneously [13,20].

2 AxonEM Dataset

The proposed AxonEM dataset contains two EM image volumes cropped from
the published cortex datasets, one from mouse [11] (AxonEM-M) and the other
from human [30,34] (AxonEM-H). We densely annotated axons longer than 5 µm
in both volumes (Sect. 2.2), and performed basic analysis (Sect. 2.3).

Fig. 3. Visualization of ground truth axon segmentation. We show 3D meshes of axons
with length either 5–6 µm or > 50 µm. As expected, the short axons are fragments
near the volume boundaries that briefly enter and leave the volume.

2.1 Dataset Description

Two tissue blocks were imaged with serial section EM from layer 2/3 in the
primary visual cortex of an adult mouse and from layer 2 in the temporal lobe
of an adult human. The image volumes were 2× in-plane-downsampled to the
voxel resolutions of 7×7×40 nm3 and 8×8×30 nm3, respectively. We cropped
out two 30×30×30 µm3 subvolumes, AxonEM-M and AxonEM-H, intentionally
avoiding large blood vessels in order to contain more axon instances. We refer
readers to the original papers for more dataset details [11,30].
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2.2 Dataset Annotation

For training, we annotated nine 512 × 512 × 50 subvolumes to produce dense
ground truth segmentation, respectively, for each volume. For evaluation, we
annotated all axon segments that are longer than 5 µm. We choose this thresh-
old because segments shorter than 5 µm mostly concentrate near the borders of
the volumes, making it difficult to confidently classify them into axons due to
the lack of context. We took a semi-automatic approach for annotation. Starting
from the initial segmentation provided by the original datasets [11,30], proof-
readers inspected potential error locations suggested by automatic detection [19]
in Neuroglancer [1], and manually corrected remaining errors in VAST [6].

Initial Dense Segmentation. For AxonEM-M, we downloaded a pub-
licly available volume segmentation computed from a variant of 3D U-Net
model [11,18] and applied the connected components method to obtain the initial
segmentation to start with. For AxonEM-H, we manually created small volumes
of dense segmentation to train the flood-filling network [15] and ran inference on
the entire AxonEM-H volume to generate the initial segmentation to start with.

Axon Identification. We first identified axons from the initial dense segmen-
tation, along with the skeletonization obtained by the TEASER algorithm [28].
We computed for each segment the following statistics: volume, path length, and
width (i.e., average radius of all skeleton points). Based on these stats, we used
the K-means method to cluster the segments into K = 10 groups with similar
morphology. Then we visually inspected the 3D meshes of all segments that are
longer than 5 µm, and classified them into four categories: glia, dendrite, axon,
or uncertain. Instead of going through each individual segments one by one, we
pulled a small-sized batch from each of the groups with similar morphology. This
enabled us to collectively inspect such a “minibatch” of morphologically similar
segments all at once, thus making our classification more efficient and effective.

Axon Proofreading. After identifying axons, we automatically detected the
potential error locations based on morphological features and biological prior
knowledges [19]. To correct remaining split errors, we measured the direction of
the axon skeletons at every end point, and then selected candidate pairs of axons
whose end points are close in space and pointing to each other in direction. We
examined these candidate pairs, as well as those axon skeletons that terminate in
the middle of the volume without reaching the boundaries, which may indicate a
premature termination caused by a split error. To fix remaining merge errors, we
inspected the junction points in the skeleton graph, because some of them may
exhibit a biologically implausible motif such as the “X-shaped” junction [21].

Finalization. Four annotation experts with experience in axon reconstruction
were recruited to proofread and cross-check the axon identification and proof-
reading results until there remains no disagreement between the annotators.
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2.3 Dataset Analysis

The physical size of our EM volumes is about 250× larger than the previous
SNEMI3D benchmark [2]. AxonEM-H and AxonEM-M have around 11.3K and
6.7K axon instances (longer than 5 µm), respectively, over 200× more than that
of SNEMI3D. We compare the distribution of axon instance length in Fig. 2,
where our AxonEM dataset contains more and longer axons. Due to the presence
of two glial cells, in AxonEM-H there are fewer long, branching axons than in
AxonEM-M. In Fig. 3, we show 3D meshes of short (5–6 µm) and long axons
(>50 µm) from both volumes. Again, one can see the vacancy of long, branching
axons in AxonEM-H where the glial cells (not visualized) occupy the space.

3 Methods

For 3D axon instance segmentation, we describe our choice of evaluation met-
ric (Sect. 3.1) and two state-of-the-art methods adopted for later benchmark
(Sect. 4).

3.1 Task and Evaluation Metric

Our task is dense segmentation of 3D EM images of the brain, e.g., as in the
SNEMI3D benchmark challenge [2]. We focus, however, our attention only to the
accurate reconstruction of axons, which are challenging due to their long, thin
morphology and complicated branching patterns. To this end, our evaluation is
restricted to axons among all ground truth segments.

To measure the overall accuracy of axon reconstruction, we adopted the
expected run length (ERL, [15]) to estimate the average error-free path length
of the reconstructed axons. The previous ARAND metric used in SNEMI3D [2]
requires dense ground truth segmentation with voxel-level precision, which is
impractical for large-scale datasets. In contrast, the original ERL metric focuses
on the skeleton-level accuracy with a disproportionately larger penalty on merge
errors, in which two or more distinct objects are merged together erroneously.
In practice, due to skeletonization artifacts, the original ERL metric may assign
a good axon segment zero run length if there exists a merge error with just one
outlier skeleton point that is mistakenly placed near the ground truth segment
boundaries. To mitigate this, we extended the original ERL metric, which is not
robust to outlier skeleton nodes, to have a “tolerance” threshold of 50 skeleton
nodes (around 2 µm in length) to relax the condition to determine whether the
ground truth skeleton encounters a merge error in a segmentation.

3.2 State-of-the-Art Methods

We consider the top two methods for neuron instance segmentation on the
SNEMI3D benchmark [2]: U-Net models predicting the affinity graph (affin-
ity U-Net2 [18]) and flood-filling networks (FFN3 [15]). For model details, we
2 https://github.com/seung-lab/DeepEM.
3 https://github.com/google/ffn.
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refer readers to the original papers. Note that although their implementations
are publicly available, in practice, a substantial amount of engineering effort may
still be required in order to reproduce the reported performance.

4 Experiments

4.1 Implementation Details

For the FFN pipeline, we used the default configuration in [15] (convolution
module depth = 9, FOV size = [33, 33, 17], movement deltas = [4, 8, 8]) and
trained separate models from scratch until accuracy saturates on the training
data (94% for AxonEM-M, 97% for AxonEM-H, and 92% for SNEMI3D). We
then performed a single pass of inference without the over-segmentation consen-
sus and FFN agglomeration steps [15]. For inference, we ran distributed FFN
on 512 × 512 × 256 voxel subvolumes with 64 × 64 × 32 voxel overlap and later
reconciliated into one volume [32]. Training and inference were conducted on a
multi-GPU cluster and reconciliation was done on a workstation [32]. Overall,
for AxonEM-M and AxonEM-H, we used 32 NVidia A100 GPUs, spent 20 h
on training and 6.2 and 5.8 h on inference for each dataset. For SNEMI3D, we
trained the net for 10 h with 16 NVidia A100 GPUs, then finished inference in
0.28 h.

Table 1. Segmentation results on SNEMI3D dataset. We report the ARAND score for
the dense segmentation and ERL score for axon segments among them. The percentage
numbers in parentheses represent the ratio of the baseline axon ERL with respect to
the upper limit given by the ground truth ERL.

Method ARAND↓ ERL↑ (µm)

Ground truth 0.000 8.84 (100%)

PNI’s Aff. U-Net (mean aff. aggl.) [18] 0.031 8.31 (94%)

Google’s FFN [15] 0.029 8.20 (93%)

Our Impl. Aff. U-Net (mean aff. aggl.) 0.038 8.22 (93%)

FFN (w/o aggl.) 0.112 5.18 (59%)

For the affinity U-Net pipeline, we first used the Google Cloud Platform
(GCP) compute engine to predict the affinity, using 12 NVidia T4 GPUs, each
paired with a n1-highmem-8 instance (8 vCPUs and 52 GB memory). Process-
ing the AxonEM-M and AxonEM-H datasets took 2.6 and 3.5 h, respectively.
From the predicted affinities, we produced segmentation using the watershed-
type algorithm [40] and mean affinity agglomeration [18]. We used 8 e2-standard-
32 instances (32 vCPUs and 128 GB memory). The watershed and agglomeration
steps together took 0.58 h for AxonEM-M, and 0.75 h for AxonEM-H.



182 D. Wei et al.

4.2 Benchmark Results on SNEMI3D Dataset

We first show the results of our reproducing experiments on the SNEMI3D
benchmark in Table 1, where we obtained the adapted Rand (ARAND) error
scores from the challenge evaluation server. Our affinity U-Net error score (0.038)
was comparable to that of [18] (0.031), confirming that we are capable of faith-
fully reproducing the affinity U-Net method. However, our FFN error score
(0.112) was severely worse than that of [15] (0.033) by a large margin, suggesting
that one should not consider our FFN baseline as state-of-the-art.

Next, we computed the axon ERL for our reproducing results, as well as for
the ground truth segmentation provided by the challenge organizer and some of
the top submission results [15,18]. The ERL for the ground truth axons was 8.84
µm, which is the average path length of the ground truth axons. As expected
from the worst ARAND error score, our FFN result showed the lowest ERL
(5.18 µm) among others. The axon ERLs for the top submission results [15,18]
and our affinity U-Net result were all above 8 µm, approaching the upper limit
given by the ground truth axon ERL (8.84 µm). Interestingly, a lower (better)
ARAND error score for dense segmentation does not necessarily result in a higher
(better) axon ERL. This is because the ARAND error score is computed for
dense segmentation including all segments (axon, dendrite, and glia), whereas
we computed the ERL selectively for axon. For example, our affinity U-Net
result was better in axon ERL, but worse in ARAND, than [15] because of more
problems in dendrite and glia.

Table 2. Axon segmentation results on AxonEM dataset (ERL).

Method AxonEM-H AxonEM-M

Ground truth 28.5 µm (100%) 43.6 µm (100%)

Our Impl. Aff. U-Net (mean aff. aggl.) 18.5 µm (65%) 38.5 µm (88%)

FFN (w/o aggl.) 9.6 µm (34%) 9.4 µm (22%)

Fig. 4. Qualitative results of our affinity U-Net baseline on AxonEM. Failure cases are
often caused by invaginating structures, thin parts, and image defects.
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4.3 Benchmark Results on AxonEM Dataset

We provide axon segmentation baselines for the AxonEM dataset by reproducing
two state-of-the-art methods, affinity U-Net [18] and FFN [15]. One should be
cautious that our FFN baseline does not fully reproduce the state-of-the-art
accuracy of the original method by [15], due to the reasons detailed below.

Quantitative Results. As shown in Table 2, our affinity U-Net baseline
achieved a relatively high axon ERL (88% with respect to the ground truth)
on AxonEM-M, whereas its ERL for AxonEM-H was relatively lower (65%).
The axon ERL of our FFN baseline was consistently and significantly lower
(22% on AxonEM-H and 34% on AxonEM-H) than our affinity U-Net baseline,
being consistent with our SNEMI3D reproducing results in the previous section
(Table 1). Due to the lack of open-source code for several inference steps, our
FFN baseline was not a faithful reproduction of the full reconstruction pipeline
proposed by [15]. Our FFN baseline lacks both the multi-scale over-segmentation
consensus and FFN agglomeration steps in [15], which are crucial in achieving a
very low merge error rate while maximizing ERL. A much better FFN baseline
by faithfully reproducing the full reconstruction pipeline remains to be done in
the future.

Qualitative Results. We show both successful and unsuccessful axon segmen-
tation results of our affinity U-Net baselines (Fig. 4). Due to the thin parts, the
axon reconstruction is more vulnerable to image defects like missing section,
staining artifact, knife mark, and misalignment [17] than other structures.

5 Conclusion

In this paper, we have introduced a large-scale 3D EM dataset for axon instance
segmentation, and provided baseline results by re-implementing two state-of-the-
art methods. We expect that the proposed densely annotated large-scale axon
dataset will not only foster development of better axon segmentation methods,
but also serve as a test bed for various other applications.
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